Report:
Correctness Criteria for the Animation of Z
Specifications via a Logic Programming Language
(Draft 2 September 2007)

M.M. West,
University of Huddersfield, Queensway, HD1 4DH, UK
email: M.M.West@hud.ac.uk,
WWW home page: http://scom.hud.ac.uk/scommmw

Abstract

This report presents techniques for the animation of Z utilising the
Godel logic programming language. The techniques are presented briefly
and illustrated by a simple example. Correctness criteria for Z animations
have been developed by other authors and these are applied to a logic
programming language (the original was applied to a functional language).
Formal arguments are presented which show that the animation obey the
criteria for correctness. The report is based on the Ph D thesis [18], which
it clarifies and updates.

1 Introduction

This report presents techniques for the animation of Z utilising the Godel logic
programming language. The techniques are presented briefly and illustrated
by a simple example. Published criteria for correctness of an animation are
compared and contrasted with the method of Abstract Interpretation (AI). In
AT a concrete semantics is related to an approximate one that explicitly exhibits
an underlying structure present in the richer concrete structure. In our case,
the concrete semantics is Z associated with ZF set theory. The approximate
semantics of the execution are the outputs of Z.

The criteria are applied to a logic programming language (the original was
applied to a functional language). Formal arguments are presented which show
that the structure simulation rules obey the criteria for correctness. The report
is based on the Ph D thesis [18], which it clarifies and updates.

2 7 and Its Animation

The initial work in the development of the Z notation was at Oxford University
in the early 1980’s. Its designers’ intention was for the major part of the notation
to be ‘conventional’ first order logic and set theory. However the notation has
a modular form: the data types, constraints on data types and the means of
updating data types are grouped into schema which are composed using schema
calculus. The Z Notation is widely used in Industry [2]. It has been used in the
development of a Smartcard-based electronic cash system [15].

In a recent talk by Michael Jackson [10], he remarked that although it can be
proved that a computer system is correct with respect to its formal specification,
it is not possible to prove that the formal specification correctly models real
world requirements. For this reason animation is proposed to aid validation of
the specification. Animation involves execution of the specification and is a form
of testing. Tests used for animation can seldom be exhaustive. However they
can produce counter examples to a supposed relationship and can demonstrate
whether some domain specific properties are present or absent. However for
this to be useful, it is necessary that a specification be correctly represented by
its animation. Abstract Approzimation was suggested by Breuer and Bowen [3]
to provide a formal framework and some proof rules for the correct animation
of Z. In abstract approximation, the interpretation of Z syntactical objects in
both the execution language (in our case the LP) and in Z are compared. For
correctness, the interpretation in the LP domain must always underestimate
the interpretation in the Z domain. This approach is unusual in that it is
more common for a program to refine a specification rather than the converse.
The reason for this more unusual approach can be expressed informally: an
animation of a Z specification must not contain any more information than the
original Z specification, as it may mislead. “Abstract Approximation” is similar
to, but not the same as the established technique of “Abstract Interpretation”
and these are compared later.

The declarative nature of Z means that the most natural choices for pro-
gramming languages for animation of Z are also declarative. A small sample of
examples is [6, 3, 16, 19, 17], involving both logic programming and functional
languages. A further example of an animator is the Alloy Analyser [9] which
simulates execution of Alloy - a Z like language'. Logic programming languages
involve relations which require the input of one or more of its parameters and
will return as output combinations of alternative value(s) of its other parame-
ters. A function, in principle, returns a single value, however the value might
be a tuple. Functions can return a partial answer, e.g. part of a list, thus al-
lowing an unbounded list to represent an infinite set. Logic programming does
not allow this, but does allow backtracking to provide the values one at a time.
We believe that a logic programming language is preferable because queries of
the “what if” variety can then be posed: given predicate Pred(x,y,z,w) the
value(s) of w can be established where x, y, z are ground or (in principle) the

1See also http://sdg/lcs.mit.edu/alloy

value(s) of x, where y, z, w are ground. Other advantages include the use of
meta-interpreters and techniques of inductive logic to investigate and explain
the conflict between expected outputs and actual outputs. (For an example,
see [12] for an Air Traffic Control Application.) The Z Notation is based on a
typed version of ZF set theory. The ‘sets as types’ feature means that formulae
in ZF containing expressions such as Vz o A(z) where A(z) is a wif appears (in
Z) asVz : 7 o A(z) where 7 is some set valued object. Ordered pairs, such as
(a,b), are usually derived from ZF as in (a,b) = {{a},{a,b}}. However this
would cause problems with incompatibility if a,b were of different types and
for this reason ordered pairs are defined axiomatically. In a similar manner the
natural numbers N are defined by the Peano axioms rather than as a definition
arising from the infinity axiom. There follows a presentation of a fragment of
the Z syntax [14]>. An example which illustrates and augments is that of a
small file system.

A 7 specification commences with a sequence of paragraphs defining the
basic types, global constants, schemas etc. The principle is of ‘definition before
use’. Basic types or ‘given sets’ are defined:

Paragraph == [Ident,..., Ident]

Note that the integers are, by default, assumed as a basic type.
An example of a small file system involves a single given set of file identifiers
Fileld:

[Flileld]
Axiomatic descriptions introduce global variables, with optional constraints:

‘ Declarations

‘ Predicate; ...; Predicate (optional)

In the file system there are a maximum number of files MazFiles, a non-zero
integer:

‘ MazxFiles : N
‘ MazxFiles > 0

Further sets are defined by Free Types, which can be recursive (trees etc.) The
simplest kind of free type can be used to define an enumerated set for example:

Dir ::= File, | Files | Filey

implying that File;, Filey, Files exhaust the set Dir and are all distinct.
Schemas: the horizontal form is defined as follows:

Paragraph ::= Schema_Name = [Declamtion | Predicate; . ..; Predicate]

2For simplicity the optional parts will be indicated textually.

and the vertical form is:

Schema_Name
Declaration

Predicate; ...; Predicate

Note that schema names can also be referenced, and the referenced name deco-
rated; the significance of this will be explained later:

Schema_Ref ::= Schema_NameDecoration

Declarations consist of basic declarations (including schema references) and
sequences of basic declarations:

Basic_Decl ::= Ident,...: Ezxpression | Schema_Ref

Declaration ::= Basic_Decl; ...; Basic_Decl

Examples are Files : F FileId which indicate that the state variable Files is a
finite subset of the set Fileld , and Count : 0.. MazFiles, which indicates that
Count can take values between zero and MazFiles. These form the declarations
for the schema FileSys:

__ FileSys
Files : F Fileld
Count : 0.. MaxFiles

#Files = Count

with predicate # Files = Count providing the relationship between state vari-
ables. If a predicate is missing, the default true is assumed.

Predicates and Ezpressions will be more fully defined later in the context of
the rest of the example specification.

The schema denoting any change in state variables is FileSys', where the
‘prime’ denotes a decoration:

__FileSys’
Files' : F Fileld
Count’' : 0.. MazFiles

#Files' = Count'

The ‘primed schema name’ has the effect that the variables of FileSys' are
primed and denote the values after some operation. Note that their types and
predicate constraint are the same as for the unprimed version. Thus we can
represent the operation of adding a file.

__AddFID
FileSys, FileSys’
NewFile? : Fileld

Count < MazFiles
NewF'ile? ¢ Files

Files' = Files U { NewFile?}
Count’' = Count +1

Predicates and Ezpressions are described next in a semi-formal way:
Predicates The simplest forms of predicates are equality (=), set membership
(€) and subset (C). In addition:

Predicate ::= Predicate V Predicate | Predicate A Predicate

| “V Declaration | Predicate” | “3 Declaration | Predicate”

Expressionsat their simplest can consist of an identifier. For simplicity we
shall designate identifiers as follows: the set of basic and free types is denoted
by the set GIVEN, the set of schema names is NAME, and the set of variable
names (within a schema) is VAR. The sets named in GIVEN form the basic
data types from which the typed sets are generated.

1. The integers, integer values and integer expressions involving arithmetic
operations,

2. Set displays (such as 0 .. MazFiles)

3. Power sets: if T; is a typed set, P (T;), whose type variables are subsets
of T;; (such as IF : Fileld, the set of finite subsets of Fileld),

4. Cartesian Product: T; is a typed set then further typed sets can be defined
recursively as T1 x T ... x Ty, whose type variables are tuples. Relations,
functions etc are modelled by their graphs so for example if T, T, are
typed sets then the set of binary relations between Ti, T» is

T & Ty ==]P(Tl X TQ)

5. Sets formed from set operations such as union, intersection, distributed
union etc.

Because we need to consider output of a schema - which is a set of bindings - we
also extend the Z syntax so that they include bindings, for consider a schema
Sch = [d | p] whose declaration d involves n variables named x;, ¢ = 1..n with
their types. A binding provides values of z; which satisfy p:

binding == <m>a1,...,Zn> Gy >

3 Approach to Animation using a Logic Pro-
gram

Previous work in the translation from Z to the logic programming language Pro-
log is [19] where the Assembler from Hayes [8] provided a case study. We called
the method we developed ‘structure simulation’ and this was used in a real
world application when Z and Prolog were used to help solve safety problems
with Pelican equipment. Structure Simulation was later extended, using the
Godel Programming Language rather than Prolog. The Unix File System from
Hayes was animated [17] and later an extended version of the Assembler [18].
Animation Rules: We advocate the Godel programming language for ani-
mation in preference to the original animator, Prolog. Go&del is defined as a
theory in first order logic - an implementation must be sound with respect to
this semantics and calls to negative literals are ground. Godel is strongly typed
so that the sorts in Godel can model the types of Z, and also a set data type
is supported. Godel has a flexible computation rule with user-defined control
declarations. Further, the language is modular and modules can be exported
(to modules) and can themselves import (other modules). The language is now
briefly described.

A predicate definition consists of a declaration, specifying the type(s) of
its arguments, and a set of statements of the form Head <- Body. where <- in
Godel means “if” and in contrast to Prolog, upper case is used for constants and
lower case for variables. Head is an atom with the defining predicate and Body
is a formula in first order logic and may be absent. Body can include first order
constructs such as universal and existential quantification. Logical and is & and
or is or. Sets in Godel are implemented in the ‘sets’ module. Set membership
is In and subset (Subset), set union + and intersection * . Sets terms can also
be intensional (see [4] for the semantics). An example the definition of |J A

where A is a set of sets and | A gives the union of sets in A:

PREDICATE DUnion: Set(Set(a)) * Set(a).

% x is a set of sets and y is the distributed union of x
DUnion(x, y) <-y ={z : SOME [w] (w In x & z In w) }.
[Lib] <- DUnion({{1, 3}, {2, 3}, {5, 1}, {}}, x).

x = {1,2,3,5} 7

Sets are implemented in a manner based on finite set theory - the axioms of set
theory are equivalent to the ZF axioms except for the Infinity Axiom. The sets
module is used as a basis for the Lib module, a library of code which implements
the Mathematical Toolkit.

Relations, functions are modelled using a type constructor, 0P which allows
the definition of OrdPair and hence of a relation between two sets.

CONSTRUCTOR 0OP/2.
FUNCTION OrdPair : a * b -> 0P(a,b).

Whhhh declaration of partial function from set a to set b %h%Ah%
PREDICATE PF : Set(OP(a,b)) * Set(a) * Set(b).

#4PF checks the set pf for functionality from sl to s2
PF(pf, s1, s2) <- ALL [x,y] (OrdPair(x,y) In pf
-> (xInsl) & (y In s2) &
ALL [u] (OrdPair(x, u) In pf -> u = y)).

% query and answer: partial function is checked
[Lib] <- PF({0rdPair(1,2), OrdPair(3,2)}, {1,2,3}, {1,2,3}).
Yes

Other features will be described as and when they are needed. The following
provides an overview of the translation rules using the small file system.

Given Sets: The given sets of the specification are declared as one of the base
types (in G6del) and some constants of the base types introduced to model the
environment (for example F1, F2, F3). Other base types include schema and
variable names.

Variable bindings: A further BASE type is BindVar, used to facilitate the
binding formation of schemas. Bind1 achieves this for Fileld. BindVar can be in-
stantiated Bind1(Files, {F1, F2}) or uninstantiated. Bind1 (Files, files)
where files is a program variable.

Schema bindings and schema decorations: An example of a schema is
FileSys where schema and variable names are decorated via functions so A FileSys,
FileSys', Files' are denoted by Del (FileSys),DSch(FileSys) and DSet (Files).

% schema for state FileSys - head contains a schema binding
% the ordering in the list reflects the order provided by the user.
SchemaType([Bind1l(Files, files), Bind2(Count, count)], FileSys)
<- setFID = {x : IsFileId(x) } & %% schema predicate
files Subset setFID & count In {y : 0 =< y =< 10} &
Card(files, count).

% AddFID - includes declarations of FileSys, Del(FileSys)
SchemaType (binding, AddFID) <- SchemaType(bindingl, Del(FileSys)) &
bindingl = [Bind1(Files, files), Bind2(Count, count),
Bind1(DSet(Files), filesl), Bind2(DSet(Count), countl)] &
Append(bindingl, [Bind3(IN(NewFile), newfile)] , binding) &

count < 10 & setFID = {x : IsFileId(x) } &
newfile In setFID & ~ (newfile In files) &
filesl = files + {newfile} & countl = count + 1.

Answer sets: If we query schemas AddFID the result is an output answer
set of schema bindings. The schema declarations for AddFID are such that all
possible subsets of setFID are generated and the predicate checks their values
so that all states are eventually generated and the possible inputs which are
associated. This represents an extreme - and would not occur if (for example)
more complex data types are used such as partial function.

% test of schema AddFID.

[Demo2] <- SchemaType(b, AddFID).

% two (of many) possible schema bindings

b = [Bind1(Files,{}),Bind2(Count,0) ,Bind1(DSet(Files) ,{F1}),
Bind2(DSet (Count),1) ,Bind3(IN(NewFile) ,F1)] 7 ;

b = [Bindi1(Files,{}),Bind2(Count,0) ,Bind1(DSet(Files) ,{F2}),
Bind2 (DSet (Count),1) ,Bind3(IN(NewFile) ,F2)] 7 ;

UnDef (below) is a contrived example of a schema which outputs some
results then fails with an error message.

— UnDef
X,Y:N
Y €{1,2,3}
(X=1)vX=3)Vv({X,1,2,3} ={1,2,3,4}))

This should result in the set of bindings:

{(<X2>1,Y21>,<X2>2,Y2>1><X3>4Y=>1>,
<X3>1,Y3>2>..<X3>4Y3>3>}

When animated this results in:

[Demo2] <- SchemaType([Bind2(X, x), Bind2(Y, y) 1, UnDef).
x=1, y=17;

x=3, y=17;

Floundered. Unsolved goals are:

Goal: {v_1,1,2,3}={1,2,3,4}

Delayed on: v_1

The above is an example of an incomplete answer set - where the output depends
on the way the query is evaluated (generally it echoes the code order).
Coverage - Case Studies The strategy for animation is to test whether a term
satisfies the conditions for it to be a partial function (as in the example above)
rather than to generate all possible values from two sets. This is to prevent
the data generated growing exponentially with respect to the size of the given
sets. With this proviso, the library currently covers all of the structures in the
Toolkit - except for the formation of transitive closure of a relation. Usage of
various structures in the case studies from Hayes [8] is described next.
Assembler: The Assembler includes relations, functions, sequences, com-
position of relations and and structures such as domain and range restriction
and subtraction. As explained previously, we believe that the structure of the
animation should reflect the schema structuring, so each schema is modelled
separately, then composed with another to model (for example) schema conjunc-
tion. This contrasts with other work in this field as described in section 4. The
‘basic’ Assembler was presented in [19] where assembly contexts were modelled
and treated as if they were declared in the signature of schema Assembly. The
animation checked that sequences of assembly and machine instructions adhered
to the constraints. This was extended in the thesis [18] and the Implementation
schema was also modelled as a two phase assembler via schemas Phasel, Phase2.
In Hayes Implementation is expanded out and it is proved that it is the same

Syntactical Element Covered | Case Study Comment
Relations and Functions Yes Assembler and Not Transitive
Unix File System | Closure of Relation
Domain and range restriction Yes Assembler and
and subtraction Unix File System
Sequences Yes Assembler
Bags No
Schema Disjunction, Conjunction | Yes Assembler and
Unix File System
Binding formation 8schema Yes Unix File System
3Schema Yes Assembler Requires Expansion
Y Schema No
Generic Schemas No

Table 1: Coverage of Z Syntax

as Assembly where Implementation = Phasel A Phase2 \ (st,rt, core). Vari-
ables st,rt are tables and the sequence core can be thought of as acting as
a ‘place-holder’ for the output machine sequence. The animation was able to
demonstrate this, but only the values st,rt could be hidden (and derived); a
value of core was necessary for the computation.

Unix File System: The structures used included functions as for the as-
sembler. A schema CHAN represents a file and a current position in the file. A
channel storage system cstore denotes a partial function between channel iden-
tifiers (the set CID) and CHAN: cstore : CID -+ CHAN and cstore is updated
by the opening of a a new channel: cstore’ = cstore ® {cid! - 6CHAN}. A
query will provide possible values of cstore’, given the value of cstore - so it is
unlike the Assembler which mainly checks values. Table 1 indicates syntactical
elements which are covered by the rules and the case studies from Hayes [8] (if
any) which they occur in.

4 Comparison with other Work

This section compares our work with a small sample of related work. The SuZan
project is described in [6], in which a subset of Z is animated in Prolog. The
principal difference between our technique and that of the SuZan project is the
use of predicates in the schema signature to generate data so that Schema is
used as a means of a generate and test cycle. The signature type constructor
predicates are coded in a manner which generate values (of a function for ex-
ample) from instantiated given sets, and these values are subsequently tested
for conformance with Predicate. However the data generated is liable to grow
exponentially with respect to the size of the given sets, so the researchers have
provided the execution process with forms of control (such as ‘unfolding’). The
method is unwieldy (as it does not allow extra-logical features such as Prolog

‘cut’) but it does allow a wide range of ‘what if’ queries. The use of ‘pure’
Prolog is to try to ensure that the animation correctly represents the Z.

The Jaza animator [16] uses Haskell for animation purposes - and covers
most of the Toolkit. However before translation takes place, each expression
involving schema calculus must be expanded out into a full schema. There are
a variety of data structures which represent sets, some of which are similar to
the Godel representation. However it also includes set comprehensions which
are not expanded out. Functions are also represented by a special kind of set
which include the domain and range sets plus boolean flags. The author reports
that possible combinatorial explosions have been overcome so far with devices
such as coercion functions and a query mechanism. A table is provided which
compares coverage and correctness of Z animators - including Jaza, however no
systematic proof of correctness of Jaza animation is provided.

In contrast, the Miranda implementation provided by [3] is accompanied
with a proof of correctness. However the implementation does not cover given
sets. Also, any schema references, expressions etc. are expanded and absorbed
into the schemas which reference them. Whereas in our approach they are
treated in a modular fashion.

5 The Application of Abstract Approximation

This section presents a formal framework for establishing the correctness of
the animations described in section 2. The correctness criteria chosen was Ab-
stract Approzimation and this is described in rest of this paper, together with
a demonstration of correctness of ‘structure simulation’.

Abstract approximation was suggested by Breuer and Bowen [3] to provide
a formal framework and some proof rules for the correct animation of Z. In
abstract approximation, the interpretation of Z syntactical objects in both the
execution language (in our case the LP) and in Z are compared. The Z or
‘concrete’ interpretation is the interpretation we would expect if we had been
evaluating the objects using set theoretic (ZF) considerations and the logic
programming domain Dy p is the ‘abstract domain’. The comparison is in an
“extended Z domain” into which the two semantic domains are injected. The
two evaluations are compared in ‘equivalent’ environments and the comparison

10

is in the Z domain. This is illustrated in Figure 1.

Envip Eple— Drp
yo— | Y
{ =
Envz gzlle]]_ DZ

Figure 1: Approximation Diagram for LP and Z domains

A concretisation function «y relates the abstract with the concrete. The ap-
proximation expresses the underlying concept of ‘safeness’ in abstract approxi-
mation, that a computation in Dy, p should never provide more information than
the result obtained by the evaluation of an expression in Z. This is in order that
no incorrect information is output. In order to accommodate non-terminating
executions, such as integer overflow, both domains are extended by the inclusion
of a ‘L’ element for each type. The appropriate domain (or sub-domain) for
each bottom element will, in the main, be understood by its context. Exceptions
are indicated as they occur.

The method has similarities to abstract interpretation [5] which was initially
used for static analysis of imperative programs. However in abstract interpre-
tation, the sets of values are abstracted by set descriptors (e.g. ‘odd’, ‘even’ for
integers) whereas in abstract approximation sets (in Z) are abstracted by sets
in the animation - although they may be less well defined.

Recalling that the set of variable names (within a schema) are VAR, Envpp ==
VAR + Dy p, is the set of all possible LP environments associated with a spec-
ification and each syntactic expression in Z is evaluated in an LP environment
prp € Envpp. Similarly pz € Envz where Envy == VAR + Dyz. The two
environments are related by the concretisation function v : Dpp + Dz, so that
pz = voprp. The ordering derives from both the possibility of non-termination
of the execution and variable values remaining undefined. It is in respect of all
types of domain elements:

aCbe(a=Lora=h).

The ordering relation works co-ordinatewise on tuples and ordering on sets cor-
responds to two standard ‘powerdomain’ orderings. (See also [7] for a complete
treatment.) The first is where sets contain incomplete elements and can be

11

expressed formally:
DiCEDys (Vdi:Dyeddy:Dyedy Cdo) AN(Ndo: Doy e3dy: Dy e dyp Ody).

For example, {1,2,3, 1,4} C {1,2,3,4,5} and so it is not the same as subset
ordering. The second is where sets are ‘incomplete’. The notation is to ‘tag’
them, for example {1,2,3,4},1. The ordering for ‘incomplete sets’ is as follows:

(D1)uL EDy & (D1)uL E(Do)ur < (Vdy : Dy e3dy: Dy e dy C db).

We ‘refine’ an incomplete set if we complete it or (in addition) we add some
more elements: For example, {1,2,3,4}y1 C {1,2,3,.1,4,5}. The ordering for
incomplete sets is a ‘pre-order’ for if s,t are incomplete then s C ¢t and ¢t C s
does not imply that they are equal. An example can be obtained by comparing
{1,2,3,4},, and {1,2,3, 1,4},.. In [3], incomplete sets were implemented by
Miranda in the output of ‘lazy lists’ to represent a partially defined set. The
rule for correct approximation is presented next. The abstract (programming)
interpretation of Z syntax is denoted: £rp|[...]Jprp and the Z interpretation is
denoted Ez[...]pz. The rule for approximation represents the fact that if € is
a syntactic Z expression then the following condition must hold for a correct
animation of Z in D, p:

Approximation Rule 1 (AR1)

v(€crlelprr) E Ez[€](y 0 pLp)-

The following conditions form the basis of a structural induction rule in which if
it can be shown that AR1 holds for syntactic variable € = z, then it also holds
for syntactical expression € = fr. For example, f might be the syntactic operator
‘U’ on variable tuple € = (21, 22). We denote by fz, fop the interpretation in the
Z domain and LP domain respectively of the syntactic expression fr. Thus if fr
is set union, then fzz is the set theoretic evaluation of set union and f;pz is the
induced operation in Dyp of set union. In order to show AR1, the following
must hold for the operators f of Z on variables z:

Condition 1 In order to prove correctness it is necessary to show that the
interpretation in Dy, p is built recursively for each operator of Z, acting on
each syntactic Z expression.

fre(Erplz]prr) = ErplfelpLp

Condition 2 A further condition is a property of Z, i.e. the manner in which
expressions in the Z domain are evaluated.

fz(Ez[z]lpz) = Ez[fx]pz-

However this condition is only true for complete sets and is not in general
true for incomplete sets.

12

Condition 3 The third condition is the key one, which encapsulates the ap-
proximating mechanism:

Y(fre(Erplzlprr)) E fz(v(Erp[z]pLpr))-

Conditions 1-3 provide the basis of a structural induction rule:

Structural Rule for Induction:

If Conditions 1-3 hold for all pyp : VAR + Drp,z : X, then AR1 for e = 2
implies AR1 € = fx.

PROOF

v(ErplzlpLr) C Ez[z](v o prP) [Base Case]

fz(v(Erplz]prp)) C f2(Ez[z](v 0 pLp))
[fz Monotone for environment with complete sets]

v(fee(Erplz]pLpr)) C fz(Ez[z] (v 0 prP)) [cond. 3, C transitive]
Y(fp(ELpzlprpr)) C E2[f2](v o prp) [cond. 2, pz =0 prp]
v(Erplfr]prr) C Ez[fz](y o prp) [cond. 1]
0

The base types for induction include integers, instantiations of given sets, sets
of integers and variables. However since Condition 2 is only true for complete
sets, then AR1 can only be used for complete sets. In order to encompass
incomplete sets, we need to extend ZF operations. A further induction rule is
presented, as in [3]: AR2 is implied by AR1, provided that we interpret fz for
incomplete sets in such a way that is is monotonic in the refinement relation for
incomplete sets.

Approximation Rule 2 (AR2)

Recall ppp : VAR + Dpp is an environment in the execution domain Dy p, then
vyoprp : VAR -+ Dy is an environment in Dz and write pz = yoprp. Consider
p, environment in Dz which refines pz, viz. pz C p',. Then AR2 is:

pz C py = v(Eplelprr) C Ez[elp’y-

AR2 is stronger than AR1, for if we take pz = p',, then AR2 becomes AR1.
Conversely, assuming the monotonicity of fz, then AR1 implies AR2.

If Conditions 1-3 hold for all pp : VAR + Dip,z : %, and fz is monotone,
then AR2 for € = ¢ implies AR2 for € = fz.

6 Comparison of Abstract Interpretation and
Abstract Approximation

The resemblances between abstract interpretation and abstract approximation
can be seen in Figure 2, which contains the approximation diagrams for each

13

concept.

Abs fabs Abs E’m)Lp ELP[[E]]__ DLP
A =|) =|
1 1 | 1
1 ! | 1
(e Y Yo — 1
1 . ! 1
! 1 ! 1
: Y C i Y
Conterts feone Contexts Envz Ezle]— Dy

Figure 2: (i) Abstract Interpretation and (ii) Abstract Approximation

Reference [5] describes the use of abstract interpretation in static analysis
of imperative programs and diagram (i) of Figure 2 pictures the abstract in-
terpretation of program environments at a program node. The abstractions are
of the contexts associated with a program node. The figure indicates the loss
of information when concretising the result of an abstract interpretation. Dia-
gram (ii) of Figure 2 represents loss of information when interpreting a piece
of Z syntax in an abstract execution domain as compared with the concrete ‘Z’
domain.

Diagrams (i) and (ii) are similar in that they both represent an abstract and
concrete interpretation of a piece of syntax. However for abstract interpretation,
the abstraction is a set descriptor, whereas for abstract approximation integers,
sets, tuples in the abstract correspond to integers, sets, tuples in the concrete.
However the abstract object may not be as well defined as the associated con-
crete object. Abstract approximation also represents loss of information, for the
reason that a program may terminate, or only provide a partial answer. There
is a difference, too in the manner in which both represent lack of information.
In abstract interpretation the top element corresponds to the least precise infor-
mation, the set Z. The most precise information is given by the empty set, and
corresponds to L. The abstract interpretation is an upper approximation. As
pointed out by [11], the ordering is opposite to the ordering of domain theory;
the top element corresponds to total lack of information. Abstract approxima-
tion has the ordering of domain theory; the bottom element corresponds to total
lack of information and it is a lower approximation.

Abstract Interpretation involves two comparisons. First of all the concrete
context inputs are abstracted (via a) and an abstract interpretation of a lan-
guage construct performed. The resulting abstraction is concreted (via) then
compared with the concrete interpretation of the context and a loss of informa-
tion is found. The second comparison involves commencing with the abstract
contexts on input arcs, concretising, via 7y then performing the concrete inter-
pretation. The result is the same as if an abstract interpretation had been

14

I

directly performed: the second comparison results in no loss of information. On
the other hand abstract approximation explicitly involves only one comparison:
a syntactic object is interpreted in an environment in the abstract (execution)
domain and the value concreted (via 7). This value is compared to that found
by concreting an execution environment and interpreting the same syntactic
object in the resulting concrete environment in a concrete (Z) domain. In that
case the first result underestimates the second. For abstract approximation the
notion of ‘safeness’ is that the abstract approximation will always provide cor-
rect information. However there may be little or no information provided if the
program fails to terminate. The principle of safeness means that we do not want
to output the wrong information, for it may mislead.

The remainder of this report is restricted to the application of the generics
of abstract approximation to the logic programming domain. Although the
examples supplied are in Godel, the framework is intended to apply to any logic
programming language with sound semantics and with sets and types.

7 Formalising Structure Simulation

This section formalises the translation of Z syntax to a logic program. The
assumption is that the specification has been translated to a logic program and
that the user queries this program, as in the case of the simple example and case
studies of [19, 17]. Section 7.1 presents an overview of the animation approach
in initialising and querying the specification. Section 7.2 describes the represen-
tation of the expressions and sets of Z in the LP domain and Section 7.3 defines
the concretisation function v in mapping between the abstract and concrete
domains.

7.1 Overview

The user of the animator supplies some values for the constants and sets of
the specification, followed by an initial imposed environment p°. If the initial
environment is consistent with the constraints of the specification, an answer
set is output which provides a set of values for the other schema variables.

A schema may have other schemas as references or be defined in terms of
schema expressions (schema conjunction for example). A top level call to a
schema will provide the answer substitution set, which models the appropriate
set of schema bindings, where a single binding is of the form:

<TL0,...,Tp > Gy >
or
[Bindy (X1, a1), - .., Bind,(X,, ap)]
in the LP. The characteristic predicate for the schema (in the LP) is from the in-

terpreted syntax of the schema definition and includes syntactical objects such as

15

set expressions, predicates, declarations and references to other schemas. Sup-
pose Env,p == VAR + Dy p is the set of all possible environments associated
with a specification, then p¢ , € Envrp for the characteristic predicates to suc-
ceed. The user is then supplied with the set of answer substitutions satisfying
each schema, which will have been constrained by its environment p¢ » € Envp.
At the end of the execution the environment p{, will have been enhanced to
one of a set of environments prp € Enupp and each answer substitution will
conform to prp.

Note that for terminating computations of expressions we are interested
either in a value which terminates with success (and there may be many such
values contributing to many schema bindings) or in a finite failure. In Nicholson
et al. [13], the continuation semantics of Prolog is presented. However this is not
our approach — we are not interested in the computational processes (for example
backtracking) which accompanies such a search. We assume that some variables
are initially instantiated, and some are initially undefined and are subsequently
computed. (Whereas Nicholson et al. are concerned with the possible changing
values of variables as the program executes.) Non-termination or floundering
occurs when it is not possible to compute the undefined values.

This section describes how the integers, given sets and derived expressions of
Z are abstracted by the declarative semantics of a logic programming language.
The integers, Z, and instantiated given sets G* form the basis of domains Dyp
and Dz. Syntactic expressions of Z considered are schemas, predicates and
expressions such as arithmetical and set expressions. The output is confined to
schema bindings.

Thus evaluations of arithmetical, set and expressions other than these, take
place as part of a program execution to determine or check schema bindings. A
description is presented in the next subsection, of how the Z syntax is interpreted
in the LP, and of how the outputs can be ordered.

7.2 The Logic Programming Domain

Recall that the given sets are denoted GIVEN , the set of schema names NAME,
and the set of variable names (within a schema) are VAR. The variable and
schema names will subsequently be interpreted as constants in Dyp, which
means confining them to allowed constant names in the programming language.
However, in most of what follows, z;, ...z, etc. will be used to ‘stand for’ the
variable names.

The proposed abstract domain, Dy p, includes representations of integer val-
ues, instantiated values, tuples, bindings and sets. n-Tuples are represented
by functions of arity n» and sets are represented both as terms and as an-
swer sets. GIVEN is captured by declaring {G,..., GV} as bases of the
program and for each base G* is declared the constants gf,...g*. In order
to ‘collect together’ the constants to form a set, for each base a predicate is
constructed denoting membership. For example predicate IsFileId is applied
thus: IsFileId(F1) IsFileId(F2) etc. The set of file identifiers is formed by
set comprehension.

16

In the execution domain Dy p, the refinement ordering is generated by:
Vz:Drpe LCx

and by recursion on the representation of sets and tuples. The partial element(s)
L of Dyp represents undefined or incomplete element(s) of the various types.
The formalisation involves set terms as previously described. It also involves
sets of answer (substitutions), where the latter are only considered in the case
of schema outputs.

7.2.1 Set Objects in the LP

During execution, one or more computations may fail to terminate and this has
the following effect on set objects:

1. Set terms: recall that (finite) set terms are represented by

{a1,09,...,a,},0r a1 0(...(a, 0D))))

where each q; is itself a term. The following set contains an incomplete
element:

(Lo(aro(...(ano02))))

and when a computation of a set term fails to terminate, in an attempt
to evaluate an infinite set for example, we obtain:

(a1 0(...(anol)))

In both cases the set evaluates to ‘L’ since functions are strict. This
bottom element is designated Null, to distinguish it as a set and the
equivalent of @, in Dz. We have, for all set a:

aVU (Nully) = (Null)) U a = Null,
N (Nully) = (Null,) N a = Null,

2. Sets of answer substitutions: recall that for some schema Sch, a binding
is denoted in the LP:

0Sch = [Bmdl (Xl, 0,1), ey Bmdn (Xn, an)]
where a;, € Dyp, X; € VAR, Sch € NAME.

and that the answers to a query concerning the characteristic predicate of
Sch provide a subset of

{Sch e §Sch}

which depends on the values instantiated. However an answer set can
output some results then fail with an error message. An example would
be a schema with

17

x=1)\/ (x, 1, 2, 3}y = {1, 2, 3, 4}

in the predicate. Whether the answer set contains some or indeterminate
answers depends on the way it is evaluated (generally it echoes the code
order). Thus there is no way of knowing, from the output, the nature
of the rest of the set. This set is an example of the incomplete output
set of schema UnDef where, if b;, (4 = 1...k) is a schema binding the
incomplete set of answers can be denoted

{b1,...bx}ur

where no more answers are provided after the k% which is followed by the
output of an error message, as in the example.

Figure 3 contains the abstract (or LP) representation of Z expressions which
is defined recursively via terms in the logic programming language.

Drp ::= m,m an integer

| g¥, where each gf is base G*

| Tn(a1,...,a,) where a € Drp, a tuple

| {a1,...,a,} where ar € Drp, enumerated free type

| {a1,...,0a,} where ax € Dyp,ar # L, an complete set term
| {a1,...,L,...an}(= Null,) where a; € Dip

| {a1,.-.,0,}u1(= Null,) where a; € Dip,

| Bind;(X;, a;) where a; € Dpp, X; € VAR
a single variable binding

| [Bindi (X1, @), .., Bind,(X,, an) |, where a; € Dp, X; € VAR,
a schema type — — a single schema binding

Figure 3: The Interpretation of Expressions in the LP Domain

Dyp is supplemented by the following answer set for a schema, of complete
and incomplete schema bindings:

DLP L= {bl bn} | {bl ...bn}uj_
where each b; is of the form:
[Bindy (X1, a}),- .., Bindy (X,,a’)]

In addition, for each base type G* there is a unary predicate IsG* which is
applied to each constant, gf, of the base®. Bindings of variable names to val-
ues, Bind;(X;, a;) provide an environment, and also interpret schema types, as
described.

3Where the meaning is apparent we shall in future remove super and subscript from in-
stantiated elements and given sets and use g, G, respectively.

18

7.3 Concretisation Function v

Expressions of Dyp are mapped to expressions of Dz, and predicates of Dy p
to predicates of Dz. L of Dpp maps to L of Dz. A concretisation function
v : Dpp — Dz is constructed which maps to Dz from an abstract domain
Dy,p recursively as follows: integers in Dy p map to integers in Dz, instantiated
values of given sets map to instantiated values in Dz, set terms map to sets,
and functions, Ty (a1, a2, - - -, a,), map to n-tuples. If a; is a term in the LP and
X; € VAR, G a ‘typical’ base type representing a given set and g a ‘typical’
member. The mapping v for terms is defined in Figure 4.

v(m) = m,m an integer
v(9) = g, constant of base type G is

mapped to instantiated element g

v{a1,. .-, an}) = {v(a),-.-,v(an)},

(Lo (aro(...(an09)))) Y(Null) = @y,
(ag0(...(ano1)))
(
(

¥ = y(Nulll) =9u,

Y(Tn(ar,- .., an)) = Tu(v(@m),-..,7v(an)),

y([Bindi (X1, a1), ..., Bind, (X, a,)]) = {Xi—=vy(@),...,Xn— v(an)}
a single schema binding

(L) = 1

Figure 4: v: LP terms

We now define how v maps the answer substitutions which model schema
bindings. A complete (incomplete) set of schema bindings maps to a complete
(incomplete) set of schema bindings. If binding b; is an answer substitution for
i = 1...m then Figure 5 shows the mapping of a complete and an incomplete set
of b;. Where the set is incomplete we obtain the set up to element &, 0 < k < m,
then no more values.

YH{b1 ... b }) = {e1...cm}
’Y({bl---bk}UJ_) = {cl...ck}UJ_
where

b; = [Bindi (X1, a}),..., Bind,(X,, al)],
ci ={Xi = v(a}),..., Xn = y(a})},
for i=1..m

Figure 5: v: Answer Substitutions

19

8 Correctness: Proof Arguments

The structural induction process is intended to show that the answer set out-
put from the LP for a given query abstracts or underestimates the answer set
expected from the Z interpretation. We need to determine how a given piece of
Z syntax will be interpreted in the LP and Z domains in a given environment.
The basis for the induction is the integers and given sets of the specification.

8.1 Structural Induction: Strategy

The base types for the induction are (i) integers, (ii) sets of integers, (iii) given
sets and their instantiated elements and (iv) variables, so the first task is to
show how their interpretation in the LP underestimates the interpretation in Z.
Induction is over each Z construct and includes

1. Numeric expressions

2. Set expressions (union and distributed union)
. Predicate expressions: infix

. Set comprehension and variable declarations

. Predicates: quantified expressions (which depend on declarations)

S Ot s W

. Schemas and Schema Expressions

9 Base Types

(i) Integers

The assumption is that there are largest positive and negative integers available
in the system, MazInt, MinInt, which cannot be exceeded. Any attempt to do
so may cause the computation to terminate. Thus for m € Z:

Erp[mlprp = m = Ez[m]pz, — MinInt < m < MazInt
Erp[m]prp = L, m < —MinInt or m > MazInt

(L may be implemented by the output of an error message, or alternatively to
the character oo. The latter is suggested by the IEEE floating point standard.)
Thus since v(L) = L:

y(Erp[mlprp) C Ez[m]pz, m € Z

(ii) Sets of integers s
Suppose s is a subset of {i : N | —MinInt < ¢ < MazInt} and assuming that
the memory bounds are not exceeded, then the abstract interpretation is exact.

20

Where MinInt, MaxInt are exceeded, (for example s = Z) then s is inter-
preted as Null, in the LP, and therefore underestimates its interpretation in
the Z domain.

v(Erp[{i: —MazInt < i < MazInt}y,]prp) = v(Nully) = @u1 C Ex[Z]pz,

(iii) Given sets and their instantiated elements

Suppose G, g is a given set and typical element. The are interpreted in the
LP by base type G, associated constant g and predicate IsG. In each case the
abstract interpretation is exact for:

v(€crlglprr) = 9
Y(€p[Glprr) = v({z : IsG(z)}) = G

(iv) Variables

The value of a variable can be obtained as a ‘lookup’ in the environment, where
Env interprets the LP environment as in Andrews [1]. Assuming that the vari-
able has a defined value, the trivial interpretation in the LP is:

(z; = a;) «— Envrp
which can be denoted:
Erplzillpir = i &
(z; = a;) & true (a; # L).
If the variable is undefined because of finite failure, the answer returned is false:
Erplzilprr = L & (a; = L) & false.

If the variable is associated with a schema binding, there are no values which
satisfy the instantiated variables and the schema predicate, so no answer sub-
stitutions. For further discussion see Section 14.

If the variable is undefined because of non-termination or floundering, the
answer returned is L:

Erplzlpep =L & (0, =1) & L.

In either case this is an exact approximation of the interpretation in Dz, since
Pz =7°pLP-

10 Numerical and Set Expressions

Provided MaxInt, MinInt are not exceeded (as in Section 9) the evaluation is
via the Peano rules of arithmetic, as in the concrete domain, otherwise the
expression evaluates to L. Thus if fr is a numerical expression, evaluating to
m:

Erplfelprr = m = Ez[fx]pz, — MinInt < m < MazInt

Erplfr]prr = L; Ez[fx]pz = m,m > MazInt or m < — MinInt

21

Thus the abstract evaluation underestimates the concrete and:

Y(Eplfzlprr) C Ez[fz]pz,

We next apply the rules to set expressions, beginning with set union*. Set oper-
ators such as intersection and power set are a special case of set comprehensions
and will be treated in Section 12.

10.1 Set Union

Consider the syntactic expression ‘z; Uz,’ which is interpreted via an equivalent
‘term’ in the LP, denoted ‘z ULp 12’. (Recall that in Gddel, ‘union’ is provided
by a function ‘+’.)

Suppose sets are complete and with complete elements:

XL 01,2 a2 € PpLP.

The expression z; Uy p 2, is evaluated using the LP ground substitution {z; /a1, 22/ a2 }
so that (21 ULp 22){z1/ a1, 22/ a2} evaluates to (a1 Urp a2). We assume that Uz p

is set-theoretic and implements U for finite sets in the same manner as U for
ZF. (See Appendices B, C of my thesis [18].)

Condition 1 becomes:

frp(Erp[(z1,22)]prp) = a1 Urp aa = Erp[z U m:]pLp.

which will hold for set operations for terminating computations. That is the
interpretation of ZF operations on sets is built recursively.

Condition 2

If z;, 1, are complete sets, y(z1,72) in Dz evaluates in the expected way to

(v(a1),7(az2)) and
fz(Ez[(z1, 12)]pz) = v(a1) Uz Y(a2) = Ez[m U m]pz.

Since Uy p is set-theoretic then (a1 Urp a2) = v(a1) Uz y(a2) and Condition
3 becomes:
v (foe (Erp(z1, 72)]pLP))
=7(a1 Urp a2) = v(m) Uz v(a2) = fz(v(a1, (a2))) =
fz(y(Erp[(m, 2)]pLP))-

In other words the computation is exact for terminating computations. There
are two ways of extending the result to non terminating computations.

1. Provide an extension of union to incomplete sets and use AR2 as the
proof rule. If

T = ayL, % =D,

4The reason for following this route rather than commencing from |_J and specialising is
that U is easier to demonstrate.

22

we define the extension for union:
(aUJ_ Uz b) = (aUZ buJ_) = (aUZ b)uJ_

which is pointwise monotonic in the Z domain for non-standard sets. Con-
ditions 1-3 thus hold when ‘f’ is ‘U’, thus: since AR2 holds for z;, 22,
then AR2 holds for € = z; U 2>, where U is pointwise monotonic for both
standard and non-standard sets.

2. Interpret figure 1 directly and we see that in Dy p, if 2; is not a standard
finite set it can only have the value z; = Null;, and the left hand side of
ARI1 for e = 7y U ap is

vy ((N’LLHJ_) Urp b) =7 (NullJ_) =0y,

since all set terms in the LP involving Null, evaluate to Null;. Then
since

I — @UL,.@ = ’Y(b)

are both members of environment pz(= v o prp), the right hand side of
the ordering relationship becomes:

Bu1 Uz v(b)

which will, in any case always exceed @, whatever its value, provided
that it is still type correct. Since we have established conditions (1 — 3)
for complete sets and AR1 directly for incomplete or infinite sets, then
AR1 holds when ‘f’ is ‘U’.

10.2 Distributed Union
We denote distributed union in the LP by ULP and it is defined so that it

implements [for finite sets in the same manner as | for ZF. The argument that
the LP interpretation underestimates the Z interpretation follows in a similar
fashion to the argument for U.

Consider, first, the evaluation of |z where z = {a;...a,} is a complete,
finite set in the LP environment. Then z is y({a1...a,}) = {v(a1)...v(axn)}
in the Z environment.

fpErpl(@)lprr) =U, ({or---an}) = ELp[Uzlprp = Erplfzlpre.

Thus Condition 1 will hold for set operations for terminating computations.
Condition 2

If x is complete and involves only complete sets, the interpretation in Dz eval-
uates in the expected way, v(z) = {7(a1) ...7(an)} and we have

f2(E21(@)]pz) = U {v(a) ... v(an)} =U _ v({ar ... an}) = E2[U z]pz.

23

Since ULP is set-theoretic then: 'y(ULP({al s.0p}) = UZ({y(al) ..v(an)})
and Condition 3 becomes:
v (fre (Erpl(z)]pLp))

=v(U, o a}) =U {7(a)...v(an)} = fz(v(Err(@)]prp))-

Since it is equivalent to the set-theoretic definition then ULP approximates

exactly in its interpretation of | z in the case where z is complete. Thus AR1
is true for complete sets.
In [3], the operation UZ is extended to incomplete sets or sets containing

incomplete sets so
UZ{UUJ_a v, w} = UZ{UJ v, w}U—L’

U, (t1) = (U, Bt

and is thus monotonic.
The case for incomplete sets follows for ULP z = Nuwll, for z non-standard

for the LP and we use the direct method rather than AR1. Evaluating left and
right hand sides ULP z, where z is incomplete, contains incomplete elements or

is infinite. Thus if (z — Null,) € prp, then

LHS = y(€cp[Uz]pLp)
=v(U,,2) =v(Null1) =D
RHS =&z[Uz](yopLp)
= UZ DuL

and the LP interpretation underestimates whatever the value of the right hand
side of the order relationship AR1.

Thus |J is interpreted exactly for complete sets and underestimates where
sets involved are infinite or non-standard.

11 Predicate Expressions

The evaluator Ppp interprets syntactic predicates p in the LP domain in the
manner expected. However the usual boolean set is augmented by an additional
‘undefined’ element, the output when a program flounders or fails to terminate
during its evaluation. This domain element is distinguished from other ‘unde-
fined’ elements from other types. Thus if

Boolz = {tt, ff, LT}

Bool,p = {true, false, LE,}

then

v(true) = tt,y(false) = ff,v(LLp) = LF.

24

We also have:

Prp[P1 A P2]prp = (Prp[Pilpre & Prp[P:]prp = true) <
((PLp[Pi]prp = true) & (Prp[Pa2]pLp = true))

The approximation requirement, AR1 for predicates becomes:

Y(Prrlelprp) CE Pz[el(vy o prp).

Examples of predicates to be interpreted are infix predicates =, C and €. Quan-
tification predicates VD | p @ g and 3D | p e ¢, where D is a declaration will
be treated later, after we have covered declarations.

In an LP, infix predicates p € X5 of the form p(z1,22), =1,20 € ¥ are
interpreted in such a way that they potentially provide enhancements to the
existing environment as well as evaluating to boolean values. There are three
constraint properties associated with predicate evaluation. Suppose 7 is an infix
predicate, standing for equality, subset or membership. Then if either (or both)
1) or 22 is undefined or only partially defined they can become ground through
resolution. We call this property:

Constraint Property 1:

Pre[tiZz]prp = Pre[mZx]p)p = true

where p' p = prp ® {11 = 01,22 — a2 }.

The environments of predicates conjoined to the infix predicates are also en-
hanced:

Constraint Property 2:

PLp[P A (m1Zz2)]prp = Prp[(@1Z22) A Plprp = Prp[PloLp

where p’ p = prp ® {1 — a1, 22 — az}. The same constraint properties can be
extended to Z: Constraint Property 1:

PzlnZx)pz = Pz[t1Zx]p'y = true

where p'; = pz @ {21 = v(a1), 72 = Y(a2) }.

The environments of predicates conjoined to the infix predicates are also en-
hanced:

Constraint Property 2:

Pz[P N (m1Z3)]pz = Pz[(m1Zz2) A Plpz = Pz[P]p)y

where ply, = pz ® {z1 = v(m), 22 — v(a2)}.
An extension of these properties is the case where z; can take many values.
We call this:

Constraint Property 3

PrelziZz]prp = Prp[riZz]plp = true
PLp[P A (m1Zz2)]prp = Prp[(@1Z22) A PlpLp = Prp[PloLp

25

where
Prp=prp ®{m = a1}V pp=prp ®{m = a2} V...
V ppp = prp ®{m — an}

where pp € Envrp. Constraint Property 3 can similarly be applied to the
Z interpretation. The first infix predicate we shall examine is equality, which
considers the equality or otherwise of expressions z;, 2.

11.1 Infix Predicate: Equality

The interpretation of z; = 2, in the LP not only evaluates to true or false
but also potentially provides values for the environment. We need to examine
three cases, where both (1, 1) are defined, where only one is defined and where
neither are defined.

(i) Both (z1,22) defined:

We assume that both (21, 13) are defined, or that there is sufficient information
in prp for their evaluation. The truth or falsity of 21 = 25 in both the LP and
in 7 is determined by the value of both expressions:

Prelz = w]prr < (Erplnlprr = ELp[z]pLp)
Pzlo = mlpz & (Ezln]pz = Ez[v2]pz)

When both variables are defined, it is appropriate to consider AR1.
Condition 1 will hold for set operations for terminating computations, for if
‘f’ is equality, then

fep(Erp[zi]prp, Epz]pLp)
is the boolean value of
(Erplmlpre = Evpla]pLp)

and so

fre(Prp[(z1, 2)]prr) = fup(Erp[z]prp, Erp[z2]pLpP)
= Prp[z = w]pLp-

Condition 2 follows in a similar manner because if ‘f’ is equality, then
f2Ez[m]pz,Ez[2]pz) & (Ez[m]pz = Ez[72]p2)

and so

f2(Pzl(z1, 2)1p2) = fz(Ez[m]pz, E2w2]p2)
= Pz|[$1 = .'L'Q]]pz.

Condition 3:
We require for f syntactic infix ‘="

Y(frp(Prel(z1, 22)lprr)) = fz(v(Prel(21, 22)]pLp))-

26

Suppose that (a1 = ap) evaluates to true and since from finite theory of sets,
equality is set-theoretic for finite sets, then (y(a1) = y(a2)) evaluates to ¢t and
we have

v(ar = a2) = y(true)
= tt = v(a) =v(a2) = fz(v(a), v(a2)).

The same holds if (a; = a2) evaluates to false. Thus when z;,z» are both
defined and termination is successful, the predicate evaluation in the LP is an
exact approximation to evaluation in the Z domain.
(ii) One of (21, 22) defined:
Supposing that z; is undefined, ; — L € prp and 22 — a then the equality
predicate results in the evaluation of z; via unification (and we obtain a similar
result for z; defined, z» undefined).

If either of z;, 7, is undefined, it is more appropriate to consider AR1 di-
rectly. Thus assuming that the execution terminates, and Constraint Prop-
erty 1 applies, then the approximation is again exact, for the left and right
hand sides of AR1 are equal:

LHS of AR1 = ’y((’PLpll(l‘l = Z‘g)]]p[,p))
= y(true) = tt
RHS of AR1 = (Pz[(z1 = 2)]pz)) = tt

It is possible that the computation fails to terminate and the LHS to evaluate

to L. In that case the execution underestimates the Z interpretation.

(iii) Both (%, 1) undefined:

If both z;,z; are undefined or incomplete, then it is still possible for the en-

vironment to be enhanced since both of z;,2, may become ground through

unification. This is another example of Constraint Property 1 : where z;, 25

both unify to the same ground term a and pp = prp ® {21 — a, 22 — a}.
ARI1 can be evaluated for the case where z;, 22 are undefined, and there are

three possibilities:

Program terminates This occurs when both z;, 2> become ground through
unification, as explained above. Conditions 1-3 hold in the same manner
as when z, is defined and the approximation is exact.

Execution does not terminate, but variables become ground in Z This
occurs when (for example) constraint properties on sets are such that z;, 22
in Z, but non-ground in the LP. The approximation underestimates for

LHS of AR1 = v((Prp[(z1 = 22)]pLpr))
=7(L)=1
RHS of AR1 = (Pz[(z1 = 22)]pz)) = tt

Execution does not terminate and neither variable becomes ground in Z
In that case the approximation is exact for

LHS of AR1=~(1l)=1
RHS of AR1 = (Pz[(z1 = m)]pz)) = L

27

We can summarise, thus. Three cases have been examined, depending on
whether or not z;, 2> are defined prior to execution of equality function and
in each case AR1 is true where ‘f’ is the syntactic predicate = for variable
(71, 22): AR1 holds for (z =).

11.2 Infix Predicate: Subset

The proof of correctness for predicate C z where z = (11, 72) follows a similar
structure to that for =. However the subset predicate potentially provides
more than one possible value for the environment. In this case we must have
2o defined. However, before the computation commences it may be the case
that z; — L € prp. After the computation, z; takes values from set x,. The
proof follows that for equality, with the difference that z; can take many values.
The different values contribute to different answer substitutions. It can be
shown that the predicate evaluation in the LP underestimates the evaluation
in the Z domain. Again there are three cases, where we shall assume that the
environment does not include incomplete sets and that sets are finite

(i) Both (z1,1») defined:

Condition 1-2 will hold for set operations for terminating computations: the
interpretation of ZF predicates on sets is built recursively in both the LP and
Z.

fop(Prpl(m, 2)]prp) = for(Erplzlprr, Eplz2]pLp)

= (€rp[n]prr Cip Erp[2]prr) = Prr[n C]pLp.
fz(Pz[(z1, 2)]pz) = fz(Ez[mlpz, E2[]p2)

= (&z[z]pz Cz Ez[2]pz) = Pzlz C »]pz.

Condition 3:
We require for f syntactic infix ‘C’:

Y(fre(Erpl(z1, 22)]prr)) E fz(v(ELp[(21,22)]p1P))-

Suppose that (a1 Crp az) evaluates to true and since ‘subset’ for finite sets in
the LP is set-theoretic, then (y(a1) Cz v(a2)) evaluates to ¢t and we have

y(a1 Crp a2) = y(true)
= tt = y(a1) Cz v(a2) = fz(v(a1),v(a2))-

The same holds if (a1 Crp a2) evaluates to false. Thus when termination
is successful, the predicate evaluation in the LP is an exact approximation to
evaluation in the Z domain.

(ii) Variable z; undefined

If variable z; is undefined, then we have an example of Constraint Property
3 for suppose {a; ... an} are subsets of z; in the LP then

Pre[z C m]prr = Pre[n C m]pp = true
Prp[P A (21 C m2)]prp = Prp[(z1 C 22) A Plprr = Prp[PloLp

28

where

prp=pp®{m = a}Vpp=prp®{z1— a}V...
V prp =pLp ® {1 = a,}.

In a similar fashion suppose {v(a1)...v(a,)} are subsets of 25 in Z then

Pzlz C 2]pz = Pz[z1 C 22]p'; = true
Pz[P A (m1 C 32)]pz = Pz[(m1 C 32) A Plpz = Pz[P]py

where

Py = pz @& {a = Y(@)}V ply = pz @ {; = y(a)} V...
Vol =pz®{m — v(an)}.

Where there is only one way the environment can be enhanced, then we can
consider AR1. However where there is more than one way of enhancing the
environment, the comparison between the Z and LP domains will be deferred
to Section 12 for in that case the values contribute to a set expression.

Thus assuming that the execution terminates, and z;, 22 take unique values
then the left and right hand sides of AR1 are as follows

LHS of AR1 = v((Prp[(z1 C 22)]pLp))
= y(true) = tt
RHS of AR1 = (Pz[(z1 C m)]p})) = tt

(iii) Both Variables z;, 2> undefined
If both z, 2> are undefined, then the computation in an LP such as Godel will
fail to terminate and the output is 1% p.

LHS of AR1 = y((Prp[(z1 C 22)]pLp))
= 'Y(J-EP) = J—g

which will underestimate the RHS. Thus the interpretation in the LP underes-
timates the interpretation in Z for all three cases above.

If either of z1, o are incomplete sets, then z; C x5 evaluates to ‘J_ILJ p’ in the
LP. which underestimates the interpretation in Z. Thus AR1 is true where ‘f’
is the syntactic predicate C for variable (z1, 22), and the LP interpretation of C
underestimates the Z interpretation.

11.3 Infix Predicate: Membership

The last infix predicate is membership, z; € z» and the proof follows that for
C. If ;; € 1 then z; has potentially many values for z» defined and not empty.
The three cases can be summarised:

(i) Both z;, 12, are defined

Pre[r1 € m]pLp = true

29

where z; € 25. Otherwise the value if false. The predicate is interpreted as tt, ff
respectively when evaluated in Dy for ©y € 22,11 & 22.

If the computation terminates then the approximation is exact, as for = and
C. The result follows similarly for Z, where as before we extend the interpre-
tation of predicates in Dz to cover constraint satisfaction. Thus for z» defined
and not empty:

Pzlz € 22]pz = Pz[n1 € 12]p'y & true

where pp = prp ® {71 = a},a € 1. If 1, is defined and empty, then the
predicate evaluates to ff in Z:

Pzlz € Dlpz = Pz[z € x2]pz & ff
Thus the approximation for € is exact for both z;, 2o defined
(ii) for z; undefined and 2z, defined.
Constraint Properties 2-3 apply also for ‘membership’: Suppose 22 = {a; ... an },
then
Prrlz € »]prp = Prr[n € m]olp
PLp[P A (21 € @)]pLp = Prp[(21 € 22) A Plprr = Prp[P]pLp

where

Prp=pp®{m— a}Vpp=prp®{zi— a},...Vpip=prrp®{z — an}.

Thus assuming that the execution terminates, the situation is the same as for
subset in that the choice of the binding for z; is non-deterministic for sets with
more than one member. Where the choice is deterministic then

LHS of AR1 = v((P.p[(z1 € 2)]pLp))
= y(true) = tt
RHS of AR1 = (Pz[(z1 € 2)]pz)) = tt

(iii) Both 2,2, undefined
For 7> undefined the LP interpretation results in 1 ¥, and underestimates the
Z interpretation, however it evaluates.

We have examined all possibilities for values of z;, 2, and in all cases AR1
is true where ‘f’ is the syntactic predicate € for variable (z;, 22); the LP inter-
pretation of € underestimates the Z interpretation as required.

12 Set Comprehension and Variable Declara-
tions

Set Comprehension is defined in terms of declarations Dy; ...; D,, a constrain-
ing predicate p and an expression ¢ involving the declared variables:
Ty ITL DR ITR; ... Lp i Th | DO

We first present the interpretation of declarations, then within the context of a
set declaration.

30

12.1 Variable Declarations

Variable declarations occur within bound expressions with structure: _ D | p e
t _ where D is a declaration,p is a predicate and ¢ a term. D is of the form:

{7 B2 T2y oo Ty Ty}

These include set comprehensions, quantified expressions, lambda expressions
and schemas. The declaration results in a single tuple of values (z1,...z,)
being generated (or tested in the case of schemas). Each value is constrained
by p and used to evaluate ¢.

An evaluation function Dpp gives the interpretation in Dpp of syntactic
declarations z : 7, where z is a variable and 7 is set-valued with value provided
by prp. The declarations considered in this section do not include schema
references, for these are treated separately.

1. 7is a set:

DLPl[-'L' : T]]pr = PLP|[.’L' S T]]pLP

‘z : 7" has the effect of either testing a value or updating the environment
as in the case of the membership predicate.

2. 7 is a Power Set, T = P7' say:
Drplz : Pr']prp = Prplz C ']pLp

‘r : P’ uses a ‘subset’ test rather than a ‘membership of power set’ test
for reasons of efficiency. It has the same effect on the environment as the
subset predicate.

3. 7 is a Cartesian Product, 71 X T»:

Drplz : 1 x m2]prp = Prelz = (z1 = 22)]pLp
& Prplz € i]prp) & Prp[z2 € 2]pLp)

‘T2’ captures a representation of ordered pair (as an example of a tuple)
in the LP. In our Godel library this is ‘OrdPair’. The following shows
the implementation of +, which illustrates the interpretation of cartesian
product.

PF(pf, sl1, s2) <- ALL [z,x,y] (z In pf &
(z = OrdPair(x,y))
-> (x Insl) & (y In s2) &
ALL [u] (OrdPair(x, u) In pf -> u = y)).

Thus a single declaration (such as z : 7) has the effect of enhancing the envi-
ronment as for the membership predicate:

Drplz : 7lprp = Prelz € T]prp = Prplz € 7)o} p

31

where if 7 = {a; ... a,} then

Prp=rrp ®{z > m}Vpp =prp®{z— a},...Vp =prpr & {2 an}.

In general, if z : 7 is a declaration, then

Drplz : 7]lprp = Prrlz € Tlp}p

where it is possible for p p to take many values determined by the nature of
the type 7.
A sequence of declarations is evaluated in the LP as a conjunction

Drp[D1; ...; Dyp]prp = Drp[Di]pip & ... & Drp[Dyn]prp.

Declarations can be represented in a simpler manner in Z, where again values
are chosen from some set-valued 7. However in this case 7 is a type constructor
thus

Dzlz : T]pz = Pzlz € T]py

where 7 is a set, or a power set, P7', or a cartesian product 7/ x 7" and p/,
takes its values from 7.

12.2 Interpretation of Set Comprehension

A set comprehension is
{7 @272y o Ty Ty | D@t}

where each z; : 7; provides a value which contributes to the tuple (z1,...z,)
which is used to evaluate t. Thus if s = {d | p e t} is a syntactical set com-
prehension it is interpreted in Dip as Ep[s]prp and in Dz as £z[s]pz. Since
declarations in the LP are treated as predicates, then the set comprehension of
s is interpreted in the LP

Erplslptp ={Drrldlprr & Prplploip o ELpltlptp}

The environment p , inside the comprehension is the variable which acts as
a set generator, for recall that Dyp[z : T]pLp = Prplr € 7]p}p.- A similar
interpretation is true for Dz.

We assert that for terminating computations, AR1 is true, since the inter-
pretation of set comprehension is exact. We initiate an induction process over
the set generators (as in [3]).

A set with no set generators, is defined in the LP domain:

Erp[{l p o t}1pLp = {Erp[tlpLp} where Prp[p]plp = true
Erp{l p o t}lplp = {} where Prp[p]p)p = false

32

In the Z domain

Ezl{l p o t}py = {€zlt]p'z}, where Pz[plpy = tt
Ez[{| p o t}]py = {} where Pz[p]py = ff

Induction is based on the equivalence:
{m iy 27 oty i [poett=U{m o {z2:m; ...z :Ts | p @ t}}

We first consider terminating computations where the interpretation is proposed
as exact. The induction process depends on showing that if we assume that AR1
holds for

{z1:m; 2 :72; oo %y Ty [DOt}

then it holds for
{Z1:71; B2 T2) oo Zn P Ty} Tyl Tnt1 | DOt}

For the induction process we first consider the base case

Base Case: no set generators

We consider AR1 for the base case where there are no set generators. Condi-
tions 1-2 are true for standard sets since the interpretation is built recursively
in both the LP and Z domains:

Erpl{| p o t}pLp = {€Lpltlpyp} where Prpp]pLp = true
Erp[{| p o t}]pLp = {} where Prp[p]pyp = false

Ez[{l p o t}lpY; = {E2[t1p’s}, where Pz[plp!; = tt

Ezl{l p o t}]p; = {} where Pz[p]py = ff

Assuming that the calculation of p,t for environment p’ p terminates, the ap-
proximation of ‘{| p e t} = f(p, t)’ in the LP domain is exact, since Condition
3 becomes:

Y(fep(ELpl(p;)]pLp)) = fz(v(ELpl(p,)]pLp))-

If the calculation of p, ¢ fails to terminate, then the LHS of the approximation
evaluates to y(Null,) = @uy and thus underestimates the RHS, however it is
evaluated.

LHS = ~y(Ecplf(p,t)lpLp) = y(NullL) = Bu1
RHS = &z[f(p,t)](v o pLp)

Set Comprehension — Induction on Declaration Sequence
Induction is based on the equivalence:

{2 ime; oty iy [pott=U{m e {z:m; ...2p:7n | Do t}}

33

for values of 71,...7, in the environment. Write the interpretation of | in Z
domain and LP domains as UZ and ULP as in Section 10.

The equivalence means that the set comprehension with one generator, ‘{z :
T | p @ t}’, can be evaluated in the LP environment:

Erp[{z:7|petiprp = ULP Erp[{l p o t}lpLp

where 7 is {a1...a,} in prp and p;p = prp ® {2 — a;}. The interpretation is
similar for D.

For n generators, x; : 7T1; X2 : T2 ...%Tn : Tn, if 1 — § € prp, then
71 — (8) € pz and the set comprehensions in both the Z and LP domains can
be represented as the distributed union of a family of sets indexed by ¢ where
a; € s,b; € y(s) respectively:

Erpl{z1:m; - %y : T | p @ t}]pLp =

ULP{a,- €selip[{m:m; ...zp:mn | p et} (prp ®{m — a;})}
Exl{zs i w2 im; ok T | P t}]pz =

UZ{bi €y(s) e &z[{za:m; ... Tp i mn | P ot} (pz ® {z1 — b;})}

For finite sets, the approximation of Condition 3 is exact. Thus since AR1
holds for the empty sequence and assuming it holds for the sequence

{T2:m; ... 2y Ty | Dot}

in environments

pz ®{m = bi}, prp @ {z1 — a;}
it then holds for

{7 @72y o Ty Ty | D@t}

in environments pz, prp. Thus AR1 holds for {@; : 745 22 : 725 ... %y :7Tp | D ®
t} since it holds for each of its components 7;, p, t.

For infinite sets, or if any set is non-standard in the LP, the induction process
depends on whether we are addressing set terms or sets of answer substitutions:

e For set terms the LP interpretation of s evaluates to Null, and underes-
timates the Z interpretation in the same manner as the ‘no set generator
case’.

e For the ‘answer set’ the result depends on distributed union, where incom-
plete sets are involved. This is because we can equivalently express a set
comprehension as a distributed union. We see that this underestimates
for incomplete sets.

Thus set comprehension in the LP is an exact interpretation for finite or com-
plete sets. For infinite or incomplete sets the LP interpretation is an underesti-
mation. This is true for either set terms or sets of answer substitutions.

34

12.3 Set Operations Power Set, Set Intersection

Other set operations € = f(x1,%,...,%,) can be expressed via set compre-
hensions. Examples are set intersection and power set:

Set Intersection s = x; N1y in the LP is part of the library of set operations.
However N can be expressed as

s =4{x : (xInx1) & (x In x2)}.

where we are assuming that z;, 2, are appropriately typed. In Z this last
condition is expressed explicitly so

s=nNom={z:X|(z€n Nz €n) 0z}

This is treated as a set comprehension where p = z € 73 A € 22 Thus
for terminating computations, the interpretation in the LP approximates
exactly, and for non-terminating computations, the LP interpretation un-
derestimates.

Power Set in the LP, s = Pz can be be expressed in Gddel as
s = {z : z Subset x }.
Its generic ‘LP form’ is as a set comprehension with predicate true:

s=&ELp[{z Cxz|true e z}]pLp.

Since ‘power set’ is a type in Z, there is no specific definition for it, however
the power set axiom of ZF provides a definition in Z: The power set set
s = Pz is such that

Vze(z€s& 2Cx)

and this set and the interpretation in the LP can be shown to be equal.
Thus the interpretation of power set is exact for finite sets. For infinite
sets, the LP interpretation is Null, which always underestimates.

The interpretation is exact if the computations terminate. For infinite or incom-
plete sets, the interpretation in the LP evaluates to Null; and so underestimates
the interpretation in Z.

12.4 Quantifiers

Universal Quantification
The syntactic predicate ‘Vz : s | p @ ¢’ is interpreted in the LP :

ALL [x] (x In s <> p =>q)

35

and in ZVz : s | p = ¢ and is evaluated for finite sets s on an element by
element basis for values of s. Its interpretation can be denoted in the LP as
Prplfr]prp, where z is the tuple s, p, ¢ and ‘f’ the syntactic ‘v’. For terminating
computations, Condition 1-2 hold in the LP and in Z. If Vz : s | p = ¢’ is
true then Condition 3 becomes

LHS = ~v(fep(PLel(s,p, 9)lpLp))
= y(true) = tt
RHS = fz(v(Prel(s,p, 9)]pLr)) = tt.

and is thus exact for each p, ¢ in an environment containing s. The result follows
similarly if ‘Vz : s | p e ¢’ is false.

For infinite sets the truth value in the LP will be L¥, ie. it will fail to
terminate and the LHS of Condition 3 will evaluate to L4 p. For infinite sets,
the Z interpretation of the quantification will result in the value tt or ff, and
y(LP) = 1F and LY C ff, 1L C tt. For cases where s is incomplete, or not
fully defined, then the LP interpretation results in L, which either underesti-
mates the interpretation in Z, if it is ff, tt, or is exact, if the interpretation in Z
is L. Thus in all cases, the interpretation in the LP of universal quantification
adheres to AR1.

Existential Quantification
A similar interpretation is true for 3 where ‘Iz : s | p @ ¢’ is interpreted in the
LP

SOME [x] (x In s <-=> p & q)

and in Z: 3z : s | p A ¢ The LP interpretation evaluates to true, false, L £ 5,
which always underestimates its interpretation in Z, as for V.

13 Function Application and Lambda Expres-
sions

Function application of #; to ¢, assumes that #; is appropriately typed, as a
set of pairs. It is interpreted in the LP by

ng[tlt«z]]pr =a&S th—a€tl

It is mapped in a similar way in Z. For terminating computations, where set #;
is finite, the interpretation is exact. Where ¢, is infinite or incomplete, the LP
underestimates the Z interpretation for

Erpltite]prp = L.

Lambda expressions require evaluation individually:
ALy i T1; ... Zn i Tn | p ® t where ¢ is a term can be expressed (in Z) as a set of

36

maplets z — o where the z is a tuple (z1,...,%,) and a is the term ¢ evaluated
at (T1,...,%n):

{T:m; .o xp:Tn | Do (T1,...,2,) > t)}
It is interpreted as the equivalent set expression in the LP:

Erp[Azi ;oo p i Th | P e t]pLp =

Erpl{zs iy oz i | D@ (m1,...,2) = t)}prp =
{Drplz1 : 115 ... zn :] & Plp] | T2(Tn(z1,...,2,) — t)}

An example can be seen in Appendix C of [18]. The approximation is exact for
terminating computations and underestimates for the rest.

14 Interpretation of Schemas and Schema Ex-
pressions

Suppose that the syntactic objects schema, axdef € X3 are interpreted in the
LP and in Z by Spp, Sz respectively. A schema can be represented (in its
horizontal form) by the following syntactic object:

Sch = [Dy; ...; Dy | CP]

where D; = X; : 75, and CP ::= CPy A ... A CPy,.

Sch evaluates to a set expression, of bindings of variable name(s) to values.
The bindings are constrained by the variable declarations and by the schema
predicate. Suppose GCP is defined as CP where all the free occurrences of
X ... X, are replaced by z; ...z,

GCP(.’E]_,...,.’ER) = OP(X]_/ZL']_,,XR/.'L'”)

and any bound variables replaced by arbitrary local variables. A set of schema
bindings of Sch can be represented in Z (as suggested in [3]) by a set expression:

{Z1:71; .05 Tn Ty | GCPe{Xi—zy,....Xn = 2,}}
There is a similar representation in the LP where [Bind; (X1, 21), . .., Bind, (Xp, 2,)]
replaces {X; — 21,..., X, — 2, }. If we assume that the set of bindings is con-

strained by an initial imposed environment p° then the interpretation of the
schema Sch = [D | CP] is the interpretation of a set expression

SLPl[[X]_ 1T e Xn i T | CP]]]p%p
=&rp[{z1:711; .5 Tn i Th | GCP
o [Bindy (X1, 1), .., Bind, (Xn, 2.)] % p

The interpretation of schemas and schema expressions is in terms of a charac-
teristic predicate, providing a single binding for a schema expression.

37

14.1 Characteristic Predicate for a Schema Expression

A schema binding is obtained by providing the schema with some initial envi-
ronment, pY p. In its initial state a schema is interpreted as:

SLp[[Xl 1T e X i T | CP]]]p"LP

and this evaluates in the LP to bindings of variable names to values. During the
execution the environment has been enhanced to p This binding is a member of
the set defined previously:

SLp[[Xl 1T e X i T | CP]]]p%P
=&pl{m :m1; .- Tp i Ty ‘ GCP
o [Bindi (X1, 11),. .., Bind, (Xy, 2.)] % p

where each z; satisfies
Drp[Ds; -..; Dyulprp & Prp[GCP]pLp.

where each enhanced environment prp € Envpp. The characteristic schema
predicate of Sch is as follows:

SchemaType(binding, Sch) <
(binding = [Bindy (X1, 11), - - ., Bindp (X, 1)]) &
Drp[Di; ...; Dp]prp & Prp[GCPlpLp.

The values z; — a; ...z, — a, which satisfy SchemaType have been either gen-
erated or were part of the initial environment. Note that although the schema
definition in the LP uses ‘if” (<), by the CWA, this has the same effect as ‘if
an only if’ (&).

The Z interpretation can similarly be represented by a set of bindings where

binding = {X1 — y(21),..., Xn = y(zn)}
The values y(z;) € ran pz satisfy
(Dzl[.’L'l . Tl]]pz) & ... (’Dz[[il?n . Tn]]pz) & Pz[[GCP]]pz.

AR1 can now be considered for schemas and is worth restating. If € is a
syntactic Z expression for a set of schema bindings then condition AR1 must
hold for a correct animation of Z in Dy,p:

Approximation Rule 1 (AR1)

¥(Srrlelprp) E Sz[el(vo prLp).
where

€:{X1:T1...Xn’7'n ‘ CPO{Xll—)l'l,Xn'—).’En}}

38

The structural induction rule states that if it can be shown that AR1 holds for
syntactic variable ¢ = z, then it also holds for syntactical expression € = fr,
where in this case, f is a syntactic operator which forms a schema, from tuple
e = (D, CP), where D is a declaration and CP is a predicate. We denote by
fz,fop the interpretation in the Z domain and LP domain respectively of the
syntactic expression fr. Thus the left hand side of AR1 is

’Y(SLPl[[Xl 1T . X i T | CP]]]p%p)
=v(Erp[{m : T1; -5 T : T | GCP o [Bindy (X1, 31), - . ., Bindy(Xn, 2.)]}]0%p)
The right hand side of AR1 is:

SZ[[Xl 1T e X i T | CP]]]p%
=&z[{m 75 .. T T | GOP @ {X1 = m1,..., Xn = 3, }}]0%

These are set comprehension, which have been treated in Section 12. These
interpret exactly where components are finite and complete. Where the answer
sets is incomplete the LP interpretation underestimates.

14.2 Schema Conjunction and Disjunction

We now interpret syntactical objects such as Sch = Sch' A Sch? and Sch =
Sch! v Sch?. Provided that Sch!, Sch? have compatible declarations their con-
junction and disjunction can be defined. These are modelled by conjunction and
disjunction of the LP predicates of Sch!, Sch? with lists of bindings appended.
This does cause duplication but has not (so far) been found a practical problem.
Suppose Sch' has predicate CP' and declaration sequence D' where

D'=Xl!:7}; oo XY 7l

modelled by Godel list b;:
[Bind! (X!, z}),...,Bind} (X}, zl)]

and Sch? has a predicate CP? and compatible declaration sequence D? where
D>=X?:713; .. .; X212

modelled by Gddel list by. Given that the characteristic predicates of Sch!, Sch?
are respectively

SchemaType(binding, Sch'), Schema Type(binding, Sch?)
then the characteristic predicate of Sch is

SchemaType(binding, Sch) < (binding = b1 ™ b)) &
Drp[DY; D?]p%p & Prp[GCP* A GCP?]p$p.

39

We show that this interprets exactly the Z interpretation where the program
terminates, and provides an incomplete set of answer substitutions when the
program fails to terminate.

We show this by showing that the above definition gives the same value(s)
as the value(s) obtained by ‘expanding out’ the version of Sch = Sch! A Sch?.
which is interpreted in Z as

Sz[Scht A Sch?]pz
= Sz[[D'; D? | CP' A CP?]]p%

The above represents the declaration sequences before they are merged, so some
repetitions would be expected. The above represents the declaration sequences
before they are merged, so some repetitions would be expected. Sch is then
expressed as a set comprehension in the usual way:

Eql{zl :mis ooy ak o)y aliTd; .. 2212 | GCPY A GCP?

e { Xl !, .. Xl XEe ol X2 12}}py
Then Sch! A Sch? in the LP is:
Srp[Scht A Sch?]pLp
where given that the characteristic predicates of Sch®, Sch? are respectively
SchemaType(binding, Sch'), Schema Type(binding, Sch?).
then the characteristic predicate of Sch evaluates to

SchemaType(binding, Sch) <
(binding = [Bind} (X}, z]),..., Bind} (X}, z}),
Bind?(X2,52),..., Bind?(X2.22)])

& DLPHDI; DZ]]p%P & 7)[,12[[GC'131 A GOPQ]]sz

which is the same as if the expression had been expanded first. The criteria
for exactness or underestimation for each of these interpretations has already
been discussed. In general, where each component of an expression is exact, the
whole expression is exact,but where one component underestimates, the whole
underestimates.

Schema, disjunction is defined in a similar manner. If Sch = Sch! V Sch?
then the bindings are appended and the LP interpretations of the schema pred-
icates are disjoined. In section [] the convention for naming variables is further
refined, so that priming, input, output becomes apparent. The formalism is not
explored here.

However the naming convention enables schema composition and piping to
be accomplished. An outline is presented in [19].

40

14.3 Schema Reference in a Declaration

A declaration can contain a schema reference. If z; € VAR, t,t; € expr,S; €
NAME, where Sch is a schema reference then recall that:

basic_decl :=z1,..., Ty : t | Sch

The interpretation of this in Z is that its declarations are merged with the
declarations of the schema which reference it and its predicate is conjoined.
Thus if

Schy = [Xl 71y . Xp Ty S | predicate of Schl]
Then this is equivalent to Schy = Sch A Schy where
Schy = [Xl 171 - Xp 1 Th | predicate of Schl]

Thus if a schema Sch appears as a reference in the declarations of schema
Schy, then this is treated as for schema conjunction above: Sch is removed
from the declarations and conjoined to the predicate of Sch and its remaining
declarations.

14.4 Binding Formation ¢

The binding formation 8Sch can be used to form a binding. Its value depends
on the environment. However we interpret it here in the same context as in the
Unix file system case study. In that case study {Sch e §Sch} was constructed
first and 6Sch was interpreted as a member of that set. The set {Sch e §Sch}
in the LP is the ‘same’ set as Spp[Sch]prp however in this case it is a set term
and not an answer set. It is the set comprehension S defined by

S = {SchemaType(binding, Sch) e binding}

so that the binding formation §Sch € S where the code can be found in Ap-
pendix C of my Ph.D. thesis [18].

This means that if the computation terminates its interpretation is exact,
and if one of the members of s fails to terminate then the output of the whole
computation is 1 Fp.

Check!!

14.5 Axiomatic and Generic Definitions

Axiomatic and Generic Definitions require individual definitions; they are
interpreted in such a way that they are exact where the computations terminate.

Axiomatic Definitions are modelled in the same way as a schema, and
suitable names must be generated for them Axioml, Axiom2.... They must then
be conjoined to the schema which refer to them, as in the assembly case study
in my thesis [18]. Their interpretation is the same as for schemas,

41

Generic definitions are treated in the same way as the parametrised defi-
nitions of partial function etc, i.e. by using parameters a,b.. They are instan-
tiated when the set is instantiated, and are defined by a predicate in the LP, as
for Sequence in Appendix C.

References

[1] J. H. Andrews. Proof-Theoretic Characterisations of Logic Programming.
In Proceedings of the 14th International Symposium on the Mathemati-
cal Foundations of Computer Science, vol. 379 of LNCS, pages 145-154.
Springer, 1990.

[2] S. Austin and G. I. Parkin. Formal Methods: A Survey (NPL). DITC
Office, Teddington, Middlesex, TW11 OLW, UK, March 1993.

[3] P. T. Breuer and J. Bowen. Towards Correct Executable Semantics for Z.
In J. P. Bowen and J. A. Hall, editors, Z User Workshop, Cambridge, 1994,
pages 185-209. Springer-Verlag, 1994.

[4] K. L. Clark, F. G. McCabe, and S. Gregory. IC-Prolog Language Features.
In K. L. Clark and S. A. Tarnlund, editors, Logic Programming, pages
253-266. Academic Press, London, 1982.

[5] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fix-
points. In Proc. 4th ACM Symposium on the Principles of Programming
Languages, pages 238-252, 1977.

[6] A. J. Dick, P. J. Krause, and J. Cozens. Computer Aided Transformation
of Z into Prolog. In Proceedings of the 4th Annual Z Users Meeting, Oz-
ford University Computing Laboratory PRG, pages 71-85. Springer-Verlag,
December 1989.

[7] C.A. Gunter and D. S. Scott. Semantic domains. In J. van Leeuwen, editor,
HandBook of Theoretical Computer Science: Formal Models and Semantics
(Vol B), pages 635 — 674. Elsevier, 1990.

[8] I. Hayes, editor. Specification Case Studies (Second Edition). Prentice Hall
International (UK) Ltd, 1993.

[9] D. Jackson. Alloy: A logical modelling language. In D. Bert, J.P. Bowen,
S. King, and M. Waldn, editors, ZB 2003: Third International Conference
of B and Z Users, Turku, Finland, June /-6, 2003, pages 1-1. Lecture
Notes in Computer Science 2651, Springer-Verlag, Germany, 2003.

[10] Michael Jackson. What can we expect from program verification. FACS
Evening Seminar Series, BCS Headquarters, Southampton Street, London,
UK, February 2007.

42

[11] K. Marriot and H. Sgndergaard. Bottom-up Dataflow Analysis of Normal
Logic Programs. The Journal of Logic Programming, 13:181-204, 1992.

[12] T. L. McCluskey and M. M. West. The automated refinement of a require-
ments domain theory. Journal of Automated Software Engineering, Special
Issue on Inductive Programming, 8(2):193 — 216, 2001.

[13] T. Nicholson and N. Foo. A denotational semantics for prolog. ACM Trans.
on Programming Languages and Systems, 11(4):650-665, 1989.

[14] J. M. Spivey. The Z Notation: A Reference Manual (2nd ed.). Prentice
Hall International (UK) Ltd, UK, 1992.

[15] S. Stepney. New horizons in formal methods. The Computer Bulletin, pages
24-26, January 2001.

[16] Mark Utting. Data structures for Z testing tools. In FM-TOOLS 2000,
Germany, July 2000, 2000.

[17] M. M. West. Types and Sets in Gddel and Z. In J. P. Bowen and M. G.
Hinchey, editors, ZUM’95 — 9th International Conference of Z User’s,
September 1995, Limerick, Ireland, pages 389-407. Lecture Notes in Com-
puter Science 967, Springer-Verlag, Heidelberg, 1995.

[18] M. M. West. Issues in Validation and Ezecutability of Formal Specifications
in the Z Notation. PhD thesis, School of Computing, University of Leeds,
2002.

[19] M. M. West and B. M. Eaglestone. Software Development: Two Approaches
to Animation of Z Specifications Using Prolog. Software Engineering Jour-
nal, 7(4):264-276, July 1992.

43

