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Abstract

If a planning domain model contains bugs and inconsistencies then no matter how
efficient the planning algorithm, it is very likely that at least some of the plans produced
will be flawed. We consider the familiar ‘Tyres World’ domain and compare its validation
using two modelling languages and the tools which support them.

1 Introduction

The development of AI planning systems is difficult and error-prone. If the planning domain
model contains bugs and inconsistencies then no matter how efficient the planning algorithm,
it is very likely that at least some of the plans produced will be flawed. In consequence,
validation is recognised as a critical task [9]. The problems associated with faulty planning
domain models have been addressed by, for example, Grant [2], who also cites several other
authors in their identification of faulty plans resulting from faulty planning domains. The
emphasis of Grant, however, is on the faulty plans, which can be used for the subsequent
correction of the domain. In contrast, our emphasis is in looking at the faulty domain model.

West and McCluskey have used machine learning techniques to validate a formal specifica-
tion of an Air Traffic Control (ATC) domain (in the IMPRESS project-see for example [15]);
the authors noted that there are similarities between the validation of requirements models
and that of knowledge based systems. In this paper we will also be looking at the use of a
formal specification language for domain model encoding. We consider the familiar ‘Tyres
World’ domain [11] and compare its validation using two modelling languages and the tools
which support them. Our reasons for choosing the Tyres domain model are that it is a well-
known and well-used model that is unlikely to have any hidden errors. Our strategy is to
introduce errors and see if the tools detect them.

The first language is OCL [7, 5] and its supporting tools environment GIPO[13, 6]. OCL is
an object-centred domain modelling language. It is a structured language that allows models
to be constructed, statically and dynamically validated, and maintained with relative ease.
As well as action descriptions, an OCL model also contains substate class definitions and
other invariants. These capture information about valid states for objects and valid planning
states. Invariants are also an important part of a specification written in the second language,
the ‘B’ Abstract machine notation (B-AMN) [12]. In contrast, a domain model written in a
domain description language like PDDL [1] does not usually contain invariant information, but
focuses on action descriptions. GIPO is a GUI tool-supported environment for the creation of



AT planning domain models, incorporating a stepper, validation tools, and planning engines.
The stepper allows the user to interact directly with the model, choosing and applying actions
for a chosen task. The supporting tools environment for B-AMN is the B-Toolkit [4]. In [14]
we identified the similarities between state-based formal specification languages and planning
languages. In many languages (and in particular OCL) there is the notion of a state and of an
operation which potentially alters the state and is defined using pre- and postconditions. In
OCL a task for which we generate a plan is partly defined in terms of state initialisation and
there is a similar initialisation of state in B-AMN. There is also a similarity between methods
of validation — for example animation compares with the ‘stepper’ in GIPO and the discharge
of proof obligations for consistency has some equivalences with consistency checks in GIPO.

The motivation for this paper is to investigate any correspondence between OCL and
B-AMN, with the potential for automatic translation from B-AMN to OCL. Previous work
described the use of a formal specification language (B-AMN) for the capture and validation of
a planning domain model [14]. We identified as possible future work an investigation into the
process of implementation, by which we meant the translation from the AMN specification into
a language suitable for input to a planner. The B-Toolkit supports the processes of refinement
and implementation of an abstract machine, but the target language would normally be a
programming language such as C++ or Java. We need to test whether the translation from
AMN to PDDL or OCL is straightforward. This paper describes our first steps towards
answering that question. We also intend to investigate the adequacy of the validation tools.
We began with a domain model of the Tyres world, written in OCL and a B-AMN specification
of the same world'. The approach was the deliberate introduction of equivalent errors into
each model to see if the use of the stepper/animator and validation checks and proof tool,
would identify these faults. This is described in more detail in section 2.

2 Tyres World: Strategy for Introducing Errors

The Tyres world domain involves the changing of a faulty wheel using a wrench and a jack,
both of which are (usually) initially in the car boot. In the case of OCL, two wheels, hubs
and their attached nuts were modelled plus a spare wheel in the boot. The additional wheel
(as compared with the ‘usual’ model in [11]) was introduced so that extra validation checks
could be introduced. In contrast, in the B-AMN model four wheels plus hubs and nuts were
modelled. However, as it turned out, two would have been sufficient. A similar model was
created in B-AMN using the same objects and the same operations?. The B-AMN model
we used was, as far as we knew, ‘correct’. In both application areas (functional requirement
acquisition and knowledge engineering) it is never possible to formally prove that the ‘real-
world’ has been correctly modelled. However validation tools help us to challenge some of our
assumptions [10].

Our experiments both challenged the two models and also tested the two validation tools
in their capabilities of providing such a challenge. The planning model of the Tyres World has
been intensively validated so we should expect to find few or no errors in the original model.
For that reason errors were introduced (into the two models) as follows:

!These can be found at http://scom.hud.ac.uk/scommmw/TyresWld/
2 An exception is the case where simplifications were possible in B-AMN such as the use of a single operation
for ‘fetching a tool’.



(1) Errors in the initial state - an invalid initial state;
(i) Errors in preconditions and postconditions;
(iii) Errors in setting tasks (impossible goals).
The next paragraphs describe the errors and the following sections describe the results of
validation for each of the two tools.

Errors in the initial state We introduced errors such as the obviously incorrect state of
two wheels on a single hub.

Errors in pre- and postconditions The preconditions for each operation can be roughly
divided into two kinds. The first kind is domain specific operations concerned with a
specific object, for example the use of a wrench for loosening nuts, but which are not in
general concerned with overall consistency. The second kind can be linked to a general
rule, that a tool is not available for a task if it is in the boot for example. Errors of each
kind were introduced and the results are demonstrated.

Errors were deliberately introduced into the postconditions for selected operations - for
example after replacing the nuts on the wheel (operation do_up) one of the postconditions
is that the nuts would be on the wheel and loose. This postcondition was removed.

Errors in setting tasks Errors were introduced in the OCL task description within GIPO.
These involved an attempt to reach an illegal state (i.e. one which was inconsistent with
the domain model).

3 Tyres World in B AMN: A Comparison

We now describe the tyres world in B-AMN and compare it with the OCL version. B-AMN
is a modular language: a typical specification is composed of several ‘abstract machines’. An
abstract machine state comprises several variables which are constrained by a machine invari-
ant and initialised. Operations on the state contain explicit preconditions; the postconditions
are expressed as ‘generalised substitutions’, giving the language a ‘program-like feel’. Machine
composition is achieved by (for example) the INCLUDES mechanism which allows one ma-
chine to alter the data of another. This gives specifiers the opportunity of breaking down a
large model into smaller components — however since Tyres World is small we used only one
machine. B-AMN uses sets as a basis for its data type. The sets comprising Wheel consisted
of { WI1, W12, Wi3, Wi4, spare_wl}, corresponding to the reduced set {wheell, wheel2, wheel(}
in OCL. Hub in B-AMN is a set of 4 hubs whereas there are two hubs (hubl, hub2) in OCL
and WI_Nuts is the set of 4 wheel nuts in B-AMN (whereas there are two in OCL).

There is also a set Tool which includes a jack and a pump and a set Container which
includes a boot. Notice that in B-AMN we use upper case for sets and (as will be seen) for
operations also. Otherwise the data types and operations as far as possible mimic those of the
OCL domain model. In OCL (and PDDL) the states of the system are modelled by predicates.
Thus in OCL, ‘open(boot)’ means the boot is open and ‘tight(nutl, hubl)’ that nutl is tight
on hubl. In contrast, in B-AMN data types are chiefly modelled by sets and set constructs.
For example Open is a function between Container and the booleans { TRUE, FALSE} so the
function value Open(boot) = TRUE indicates the boot is open. Predicates of arity 2 in OCL
are also modelled by functions in B-AMN so Tight(nutl) = hubl models the fact that nutl is



tight on hubl. It can be seen that there is a potential correspondence between OCL predicates
of arity 1 and 2 with B-AMN partial functions. OCL predicates of arity one, pred(z) map to
B-AMN total functions whose domain is the type of 2 and whose range is the booleans. OCL
predicates of arity 2, pred(z,y), map to B-AMN partial functions whose domain is the type
of £ and whose range is the type of y.

In OCL, consistency checks are facilitated by the existence of ‘substate classes’ which
describe the states inhabited by the various objects which are assumed to be distinct from each
other. Thus nuts can be tight (on a hub) or loose (on a hub) or we could ‘have_nuts’. There
are also ‘inconsistent constraints’ which forbid certain combinations of object substates (we
return to this in Section 4.1). In B-AMN these constraints are modelled by an INVARIANT
using logic and set theory. Thus the domain of function Loose (all loose nuts) merged with the
domain of function Tight (all tight nuts) merged with the nuts for which Hold_Nuts(nuts) =
TRUE equals the whole of the set Wi_Nuts. Also, these three sets are distinct (have zero
intersection). These two constraints can be expressed as a predicate, part of which is shown
here:

dom ( Hold_Nuts > { TRUE } ) U dom ( Tight ) U dom ( Loose ) = WL Nuts A

dom ( Hold_Nuts > { TRUE } ) Ndom ( Tight ) = & A

dom ( Hold_Nuts 1> { TRUE } ) N dom ( Loose ) = @

(etc.)

4 Introducing Errors in Tyres World (GIPO)

Various tasks were tried out in GIPO using both the stepper and planning engines to see if
errors and inconsistencies in the domain model were detected, and to compare its performance
with that of the BTool. GIPO does perform some useful validation checks. Checks on operators
include ensuring that they consist of legal expressions. Checks on tasks include ensuring that
initial states are fully instantiated and the goal is a legal substate expression as defined in the
domain model. The effect of errors introduced is presented in the following subsections.

4.1 Inconsistent Initial State

(a) 2 wheels and 2 nuts on one hub

A deliberate error was introduced in the initial state - that two wheels were on one hub. The
other hubs were in a legal state. The OCL for the goal and this incorrect state is presented
next.

% Goals

[

se(wheel,wheelO, [wheel_on(wheelO,hubl)])],

% INIT States

L

ss(container,boot, [open(boot)]),
ss(nuts,nuts_1, [tight (nuts_1,hubl)]),
ss(nuts,nuts_2, [tight (nuts_2,hubl)]),
ss(wheel,wheell, [wheel_on(wheell,hubl)]),
ss(wheel,wheel?2, [wheel_on(wheel2,hubl)]),



ss(wrench,wrenchO, [have_wrench(wrench0)]),
ss(wheel,wheelO, [have_wheel (wheelO)]),

ss (hub,hubl, [on_ground (hubl) ,fastened (hub1)]),

ss (pump , pumpO, [pump_in (pump0,boot)]),

ss(jack, jackO, [jack_in_use(jack0,hub0)]),

ss (hub,hub0, [jacked_up (hub0, jack0) ,fastened (hub0)])]

As discussed above, additional objects were added to the original domain model, so that
there were 2 hubs, 3 wheels and 2 sets of nuts. An inconsistent initial state was created with
2 wheels (wheell and wheel2) on the same hub (hubl) and 2 sets of nuts, both tight, on the
same hub. wheel0 (the spare wheel) is available for use; have_wheel(wheel0) is true. The goal
was to have the spare wheel on hubl.

GIPO did not object to this inconsistent initial state - no errors were found by the valida-
tion checks. When tried with the planners, one of them (FF [3]) reported that the goal was
impossible. The other planner, a simple forward planner, failed to find a solution.

(b) Nuts on hub but no wheel
An initial state was created in which the nuts were on one of the hubs but no wheel was on
that hub. The other hubs were in a correct state (as seen below).

[
ss(wheel,wheell, [wheel_in(wheell,boot)]),
ss(wheel,wheel?2, [have_wheel(wheel2)]),
ss (pump , pumpO, [pump_in (pump0,boot)]),
ss(jack, jackO, [have_jack(jack0)]),
ss (hub,hub0, [on_ground (hub0) ,fastened (hub0)]),
ss(container,boot, [closed(boot)]),
ss(nuts,nuts_0, [tight (nuts_0,hub0)]),
ss(wrench,wrenchO, [have_wrench(wrench0)])]

This task is inconsistent - wheell is in the boot, we have wheel2, the nuts (nuts_0) are
tight on Aub0 and hub0 is on the ground and fastened. This implies there’s a wheel on the
hub, as the hub is not free, but as can be seen neither of the two wheel objects are on it.

Using the stepper we get to a state where there is no applicable operator. That is, we
apply the appropriate operators: open_boot, fetch_wrench, loosen, jack_up, undo_nuts until we
reach a state where the hub is unfastened and jacked up, but it is not free. This implies that
there is a wheel on the hub. This is not the case, so we are unable to remove the non-existent
wheel. Nor can we put one of the available wheels on the hub because that requires the hub
to be free as well as unfastened and jacked up. Therefore there are no applicable operators
which will allow us to achieve the goal.

This inconsistency is not found by the validation checks. The user can find it by using the
stepper or using a planner that incorporates such checks: FF for example reports that the
goal is impossible.

Our conclusion from these two experiments was that GIPO does not exploit all the valida-
tion checks made possible by the structure and content of the OCL. For example initial states
(a) and (b) violate the ‘inconsistent constraints’ part of the OCL Tyres World domain model
in that



inconsistent_constraint ([wheel_on(W1,X),wheel_on(W2,X),ne(W1,W2)]).
inconsistent_constraint ([free(X),tight (Nuts,X)]).

4.2 Missing Pre- and postconditions

(a) Removal of wrench condition:

Prevail conditions in OCL are preconditions that persist - that is, the object concerned
does not change state during the operation. An example of this would be the prevail condition
have_wrench( W) of the loosen operator:- in order to loosen the nuts we must have the wrench
- and we will still have the wrench after the nuts have been loosened. We removed the
have_wrench( W) prevail condition from the loosen operator.

operator(loosen(W,H,N),
% prevail with se (wrench,W, [have_wrench(W)]) removed
[
se (hub,H, [on_ground (H) ,fastened(H)])],
% necessary

[ sc(nuts,N, [tight (N,H)]=>[loose(N,H)])],
% conditional
1.

This error, as expected, was not detected by validation checks, but became apparent when
using GIPO’s stepper. The operator was not able to be applied because the wrench was not
available. This type of error does not affect overall consistency of the domain model, but is
just concerned with a specific object being part of a particular operation.

(b) Removal of individual pre- and postconditions

An OCL operator consists of prevail conditions, necessary transitions and conditional
transitions. A necessary transition describes a change in the state of an object in terms of a
pre- and a postcondition within one structure. For example: for the operator fetch_jack the
jack object changes state from being in the boot (precondition for the transition) to being
available for use (postcondition for the transition).

% necessary
[ sc(jack,J, [jack_in(J,C)]=>[have_jack(J)]1)],

Therefore it was not possible to delete individual pre- and postconditions because GIPO
will only allow the insertion or deletion of whole transitions. It is impossible to remove by
itself either a precondition or a postcondition - the removal of one automatically means the
removal of the other. This means we remove the whole transition and so has the effect of
removing one of the objects involved in an operator. We would not expect this type of error
to be detected by validation checks - but it does become apparent when using the stepper.

4.3 Impossible Goal

The error introduced was of attempting to satisfy an impossible goal, that two hubs were
simultaneously jacked up by the same jack object.



% Goals

L
se (hub,hub0, [jacked_up (hub0, jack0) ,fastened (hub0)]),
se (hub,hubl, [jacked_up(hubl, jack0) ,fastened (hubl)])]

% INIT States
[
ss(container,boot, [open(boot)]),
ss(nuts,nuts_1, [loose(nuts_1,hubl)]),
ss(nuts,nuts_0, [loose(nuts_0,hub0)]),
ss (hub,hub0, [on_ground (hub0) ,fastened (hub0)]),
ss (hub,hubl, [on_ground (hubl) ,fastened (hubl)]),
ss (pump , pumpO, [pump_in (pump0,boot)]),
ss(wheel,wheelO, [wheel_on(wheelO,hub0)]),
ss(wheel,wheell, [wheel_on(wheell,hubl)]),
ss(wheel,wheel?2, [have_wheel(wheel2)]),
ss(wrench,wrenchO, [have_wrench(wrench0)]),
ss(jack,jackO, [have_jack(jack0)])]

The initial state is that the two hubs are on the ground, with wheels on, nuts loose, and
the jack and wrench available.

Again the validation checks don’t report an impossible task. When tested with the planners
the simple forward planner found no solution. The FF planner very quickly says the problem
is proven unsolvable. Using the stepper we can jack up the first hub - but then the jack isn’t
available for jacking up the second hub. The state of the jack is jack_in_use, which persists
after jacking up the first hub.

Our conclusion is that an additional constraint is required in the model to say that a jack
can’t be in use on two different hubs. In addition, it would be useful to have an additional
validation check within GIPO to detect this type of error.

5 Introducing Errors in Tyres World (B-AMN)

After errors were introduced, the new specification was validated using animation and proof,
for these two activities are complementary [8]. The proof obligation generator checks that the
initial state of the machine obeys the invariant, and that each operation preserves it. It also
checks that the ‘context’ is consistent (the underlying sets, constants and their properties).
For the ‘correct’ version of tyres world, 64 proof obligations were generated out of which 33
were automatically discharged. For the rest, it is necessary for some interaction with the
prover. (Often the obligations can be seen to be true by inspection.)

However what we found particularly useful in these experiments is the fact that it is
possible for the invariant to be at least partially evaluated and displayed during an animation,
as well as the state values ‘pre and post’ to be displayed. This feature provided us with some
surprises - as we discovered violations of the invariant where we expected none - showing the
‘correct’ B-AMN model to be in fact faulty. A useful feature of the BTool is that its source
files are in ASCII and this is translated to I¥TEXto provide the appropriate mathematical
symbols. The initial values of the machine variables are shown as animation output (which



is also in ASCII). Variables Tight, Loose etc. are functions and the ‘maplet’ |-> denotes a
functional link.

Tight {nutsl |-> Hubl , nuts2 |-> Hubl , nuts3 |-> Hub3 ,
nuts4 |-> Hub4}
Loose {3

Hold_Nuts {nutsl |-> FALSE , nuts2 |-> FALSE , nuts3 |-> FALSE,
nuts4 |-> FALSE}
WheelHub {W11 |-> Hubl , W12 |-> Hubl , W13 |-> Hub3 , W14 |-> Hub4}
Open {boot |-> FALSE , tool_box |-> FALSE}
Toolln {wrench |-> boot , jack |-> boot , pump |-> boot}
HubUp {3
Wheelln {spare_wl |-> boot}

For a ‘correct’ initial state the invariant should be true. The invariant ‘check’ included the
constraint that nuts cannot be both tight and loose - the domains of Tight, Loose must have
an empty intersection. Initially (as above) this is true:

dom({nutsl |-> Hubl , nuts2 |-> Hub2 , nuts3 |-> Hub3 , nutsd |->
Hub4}) /\ dom({}) = {}

true

5.1 Errors in Initialisation

Some deliberate errors were introduced to replicate as far as possible the deliberate errors
introduced in OCL.

(a) 2 wheels and 2 nuts on one hub

The first initialisation error was to introduce two sets of wheels and nuts to one wheel.
The invariant insists that the function WheelHub relating wheels to hubs and the functions
Tight, Loose relating nuts to hubs should all be 1-1. These conditions are all contravened as
can be seen in attempt to check the function Tight:

{nuts1 |-> Hubl , nuts2 |-> Hubl , nuts3 |-> Hub3 , nuts4 |-> Hub4} :
{nutsl , nuts2 , nuts3 , nuts4} >+> {Hubl , Hub2 , Hub3 , Hub4}

where >+> is the ascii for an injective function. As can be seen this is not an injective function.
However BTool does not attempt to evaluate it, but leaves it to be determined by the tool
user.

The mistake is pinpointed by BTool when we subsequently attempt to Loosen nuts. The
following conjunct of the invariant checks that nuts can be loose on a hub, or tight on a hub,
but not both:

ran({nuts4 |-> Hub4 , nuts2 |-> Hubl , nuts3 |-> Hub3})
/\ ran({nutsl |-> Hubl}) = {}
false

This is clearly found to be false. The result of this experiment is that BTool finds this error
through animation and the check of the corresponding invariants.



(b) Nuts on hub but no wheel
An initial state was attempted with nuts on Hub2 but no wheel on that hub.

WheelHub {Wl1 |-> Hubl , W13 |-> Hub3 , W14 |-> Hub4}
Tight {nutsl |-> Hubl , nuts2 |-> Hub2 , nuts3 |-> Hub3 ,
nuts4 |-> Hub4}

The invariant is checked before we start any other animation operations. The relevant conjunct
is that if there are nuts on a hub (either tight or loose) then there is a wheel on that hub (<:
means ‘subset’):

ran(Tight) \/ ran(Loose) <: ran(WheelHub)
/* which evaluates to */
ran({nutsl |-> Hubl , nuts2 |-> Hub2 , nuts3 |-> Hub3 ,
nuts4 |-> Hub4}) \/ ran({})
<: ran({W1l1l |-> Hubl , W13 |-> Hub3 , W14 |-> Hub4})
false

As can be seen, the result is a false invariant and this is picked up immediately by the tool.

5.2 Pre- and Postcondition Errors

(a) Removal of wrench condition:
The first error introduced was that the condition for a wrench being available was removed.
The following shows

Current State

Tight {nuts4 |-> Hub4 , nutsl |-> Hubl , nuts2 |-> Hub2}

Loose {nuts3 [-> Hub3}

Hold_Nuts {nutsl |-> FALSE , nuts2 |-> FALSE , nuts3 |-> FALSE ,
nuts4 |-> FALSE}

WheelHub {Wl1 |-> Hubl , W12 |-> Hub2 , W13 |-> Hub3 , W14 |-> Hub4}

Open {boot |-> FALSE , tool_box |-> FALSE}

ToolIn {wrench |-> boot , jack |-> boot , pump |-> boot}

HubUp {3

Wheelln {spare_wl |-> boot}

In this case there was no problem with contravention of the precondition and no problem with
invariant. The error is only demonstrated by the showing of a ‘silly’ result in that the wrench
is still in the boot. This is a ‘domain-specific’ error, as it was for GIPO, which could only
have been demonstrated by animation.

(b) Removal of precondition for putting away wheel
The error here was the removal of ‘wheel not on hub’ precondition so that any wheel could
be put away>. In this case the operation took place with no problems in the pre-operational

3This was a non-deliberate error in the original B-AMN model.



invariant or precondition. However the invariant post the operation showed a ‘false’, in its
evaluation of the predicate modelling the condition that a wheel cannot be both in the boot
and on a hub:

dom({W12 |-> boot , W1l |-> boot}) /\ dom({W1l3 |-> Hub3 ,
W14 |-> Hub4 , W12 |-> Hub2}) = {}
false

The result here is that this error is discovered by BTool when an attempt is made to invoke
an operation which would result in a false invariant.

(c) PostCondition errors:

A postcondition was removed from the operation which replaced the nuts, that the nuts would
be on the wheel and loose. The relevant invariant conjunct is that each nut is in a state ‘tight
or loose or held’:

dom({nuts4 |-> FALSE , nutsl |-> FALSE , nuts2 |-> FALSE , nuts3 |->
FALSE} |> {TRUE}) \/
dom({nuts3 |-> Hub3 , nutsl |-> Hubl , nuts2 |-> Hub2}) \/ dom({})
= {nutsl , nuts2 , nuts3 , nuts4}
false

As can be seen, BTool evaluates this as ‘false’: invoking this operation would result in a false
invariant.

5.3 Impossible Goal

There is no equivalent in BTool in ‘setting impossible goals’. B AMN in its machine construct
has no equivalent to ‘one operation following another’. The only manner in which a sequence
of operations can be specified is if a refinement of the machine is created and this was not
tried. In order to correspond with the GIPO task, a single operation, of attempting to jack
up a wheel where the jack is already in use (on Hub4) was tried. HubUp is a partial function
linking a hub with the (singleton) set of jack. Prior to the operation we have:

HubUp {Hub4 |-> jack}

After loosening nuts on another hub (Hub3) an attempt was made to jack this up. The
precondition for the use of a jack is that it should not be already linked to a hub, This is
shown, where /: means ‘not a member of’:

jack /: ran HubUp
is false

BTool evaluated this as false since the (only) jack was already in use.



6 Conclusions and Further Work

Our tests have shown that neither the validation checks within GIPO nor the proof assistant
within the BTool are sufficient on their own to detect the types of errors we introduced. It is
necessary to use the stepper in GIPO and the animator in BTool to detect certain types of
error and inconsistency.

The experiments also uncovered a previously unknown omission in each of the two domain
models. In the case of the OCL this involved the missing ‘inconsistency constraint’ in the use
of the jack (see Section 4.3). In the case of the B-AMN this was a missing precondition for
putting away the tyre (see Section 5.2b).

It would seem that useful additional validation checks within GIPO would be (i) a tool to
test the consistency of the initial state - it is a waste of time trying to generate a plan when
the initial state is incorrect; (ii) a tool to test the consistency of the goal - again it is better to
detect an error of this type when the task is created. These additional checks would further
exploit the structure and knowledge of an OCL specification.

Work presented in this paper has also shown some correspondence between structures in
OCL and B-AMN. Further investigation is required to confirm whether there is potential for
an automated translation tool from one language to the other in order to exploit the powerful
validation capabilities of the BTool.

References

[1] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld, and
D. Wilkins. Pddl - the planning domain definition language. Technical Report CVC
TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control, 1998.

[2] T. J. Grant. Topwards a Taxonomy of Erroneous Planning. In Proceedings of the 20th
UK Planning and Scheduling SIG, Edinburgh, 2001.

[3] J. Hoffmann. A Heuristic for Domain Independent Planning and its Use in an Enforced
Hill-climbing Algorithm. In Proceedings of the 14th Workshop on Planning and Config-
uration - New Results in Planning, Scheduling and Design, 2000.

[4] B-Core (UK) Ltd. http://www.b-core.com/.

[5] T. L. McCluskey. The OCL Ontology. Technical report, Department of Computing and
Mathematical Sciences, University of Huddersfield , 2001.

[6] T.L.McCluskey, D. Liu, and R. M. Simpson. GIPO II: HTN Planning in a Tool-supported
Knowledge Engineering Environment. In The Thirteenth International Conference on
Automated Planning and Scheduling, 2003.

[7] T. L. McCluskey and J. M. Porteous. Engineering and Compiling Planning Domain
Models to Promote Validity and Efficiency. Artificial Intelligence, 95:1-65, 1997.

[8] P. Mukherjee. Computer-aided validation of formal specifications. Software Engineering
Journal, 10(4):133-140, July 1995.



[9]

[10]

[11]
[12]
[13]

[14]

[15]

J. Penix, C. Pecheur, and K. Havelund. Using Model Checking to Validate Al Planner
Domain Models. In Proceedings of the 23rd Annual Software Engineering Workshop,
NASA Goddard, 1998.

J. Rushby. Formal Methods and the Certification of Critical Systems. Technical Report
CSL-93-7, Computer Science Laboratory, SRI International, Menlo Park CA 94025 USA,
December 1993.

S. Russell. Efficient memory-bounded search algorithms. In Proc. ECAI 1992.
S. Schneider. The B-Method: An Introduction. Palgrave, 2001.

R. M. Simpson, T. L. McCluskey, W. Zhao, R. S. Aylett, and C. Doniat. GIPO: An Inte-
grated Graphical Tool to support Knowledge Engineering in AT Planning. In Proceedings
of the 6th European Conference on Planning, 2001.

M. M. West, D. E. Kitchin, and T. L. McCluskey. Validating Planning Domain Models
Using B-AMN. In Proceedings of the 21st Workshop of the UK Planning and Scheduling
SIG, Delft, Netherlands, 2002.

M. M. West and T. L. McCluskey. The application of machine learning tools to the
validation of an air traffic control domain theory. International Journal on Artificial
Intelligence Tools, 10(4):613 — 637, December 2001.



