Correctness Criteria for the Animation of Z
Specifications via a Logic Programming Language

by
Dr. Margaret M West,
University of Huddersfield,
Queensway, HD1 4DH, UK
email: M.M.West@hud.ac.uk,
WWW home page: http://scom.hud.ac.uk/scommmy

ICLP, Porto, Portugal, September 2007




Z is a formal specification notation based on set theory and first
order predicate logic. It is used by industry as part of the software

(and hardware) development process in Europe, USA and elsewhere.

It has recently undergone international ISO standardisation.

The use of mathematics in modelling means that formal reasoning
can then be applied to check the consistency of the specification.
Further, a version of the specification can be executed or ‘animated’

in order to demonstrate its functionality and detect flaws.




I have previously used structure simulation a technique developed by
myself to animate 7Z using a logic programming language. The
method has been applied to both Prolog and to the Godel logic
programming language - Godel is preferable as it has sets. Breuer
and Bowen (1994) developed correctness criteria for the animation of
Z, - which they call

Abstract Approximation.

The interpretation of Z syntactical objects in both the execution

language (in our case the LP) and in Z are compared. For

correctness, the interpretation in the LP domain must always
abstract (underestimate) the interpretation in the Z domain.

It is more common for a program to refine a specification rather than
the converse. The reason for this more unusual approach: an
animation of a Z specification must not contain any more information
than the original 7 specification, as it may mislead.




Abstract Approximation - in brief

€ 1s a syntactic 7Z expression.

pLP, Pz are environments.

Function v relates the abstract with the concrete so that

Pz =7 °PLP-

The abstract (programming) interpretation of Z syntax is denoted:

Erp|---Jprp and the Z interpretation is denoted: £z[.. . Jpz:

Criteria for Correctness

Y(&rplelprr) E Ez[e](v o prp).

The method has been adapted so that structure simulation has been

proved to be a correct animation.




Example - data values and predicates Both domains are
extended by the inclusion of a ‘1L’ element for each type.

aCb& (a=1ora=hb).

E.g. (1) Integer overflow results in integer variable ‘n’ remaining
undefined in the LP where its interpretation in Z results in a value,
say m.

Suppose LY, is the ‘bottom’ element for the integer type in the LP
and similarly for Z.

v(Lzp) = L1z soy(L1p) C m.

E.g. (2 ) A program flounders - denoted by L{, the ‘bottom’

element for the boolean type. If its Z equivalent results in either
‘true’ or ‘false’, then the LP interpretation underestimates the Z.




Further Work

- automate ‘structure simulation’ so it can be applied to other Case
Studies.

- investigate other implementations of ‘structure simulation’, since

the method and proof is generic to LP languages.




