Using a Logic Programming Language to
Animate Z: Correctness Criteria

Margaret West

14th July 2004

animating 7 using the Godel logic programming language.

-

School of Computing and Engineering, Unwversity of Huddersfield

The is the second of two seminars describing work presented in my
PhD thesis. This talk is concerned with the correctness aspects of

/

4 N

Background

In my previous talk I looked at the practical aspects of animating Z
via a logic programming language (viz. Godel). The rules (called
‘structure simulation’) were applied to two substantial case studies
as ‘proof of concept’.

The simulation rules were found to be practical, and to have a
potential for real world applications. but lacked any formal
framework for proving correctness. The next few slides examine

approaches to establishing correctness of the method.

_ /

4 N

Correctness - Program Synthesis

e ‘Deductive synthesis’ is a method of obtaining a ‘correct’ program
from a specification;

e A program is ‘partially correct with regard to its specification’
when it is derived logically from a specification [Hog84];

e The logic programming language Prolog is an example of a ‘Horn
Clause’ program of the form A <— B; & By .. & By;

e A systematic method of obtaining a Horn Clause program from
an arbitrary logic specification is the Lloyd-Topor transformation
via logical equivalences [L1087].

_ /

4 N

e It was found that for Prolog predicates involving set operations
we need recursion;

e However the techniques for automatically producing recursive
logic programs are still problematic [PP99].

e For these (and other reasons) the method was abandoned. and
the method eventually chosen ‘structure simulation’ was described
in the previous talk;

e The correctness criteria eventually chosen is Abstract
Approximation and this is described in rest of this talk, together

with a demonstration of correctness of ‘structure simulation’.

_ /

\

Order of Work Presented

(1) Correctness - Abstract Approximation;
(2) Z Syntax and Interpretation(s);

(3) The Z domain;

(4) LP Domain;

(5) Loss of Information and Ordering;

(

(

(

(

v
v
v
v
9maﬁm-ssammSmabammmbaoa@ismw
7) Proof Method - induction;

)

)

9) File System Example.

4 N

(1) Correctness: Abstract Approximation
A different approach to correctness is abstract approximation,
introduced by Breuer and Bowen |BB94| to provide a formal

framework and some proof rules for the correct animation of Z.

e The method has similarities to abstract interpretation, [CCT7];

e Abstract interpretation was initially used for static analysis of
imperative programs.

e Cousot and Cousot related a concrete semantics with an abstract
semantics;

e ‘Abstract interpretation’ formalised a commonly used technique -
e.g. calculating the dimensions of a physical expression.

_ /

4 N

Example of Abstract Interpretation
Given a formula, e.g. the formula for the period, T of a simple

pendulum of length [is

T = 2n(1/g)"/?, where g is gravity.

The dimension of length is [L], the dimension of time [7T'], and the
dimensions of acceleration are [L][T]™% and ‘27’ is a scalar quantity
and dimensionless. We use ‘dimension calculus’ as an abstraction.

Thus the dimensions on the right hand side of the formula are

(L] / [)[T]2)?

which evaluates to [T], the dimension of the left hand side. This
means that the formula is ‘possibly_correct’. The only other answer

we could have obtained is ‘wrong’.

_ /

4 N

e The two answers are a way of ensuring that the interpretation is
‘safe’. This means that if a property of the concrete interpretation
is promised, then it is guaranteed.

e Since the original paper, the work of the Cousots has been
extended to declarative languages, including the application to
groundness analysis in logic programming [CC92].

e The Cousots have published many papers on abstract
interpretation which can be found at

http://www.di.ens.fr /cousot /COUSOTpapers/.

_ /

4 N

Abstract approximation

- was suggested by [BB94] to determine the correctness of
animations of Z. The idea is that Z is the ‘concrete domain’ and
the logic programming domain Dy p is the ‘abstract domain’.

e This compares the interpretation of Z syntactical objects in both
the execution language (in our case the LP) and in Z.

e We compare the interpretation in the LP and in Z in ‘equivalent’
environments.

e A concretisation function v relates the abstract with the concrete.

_ /

\va Interpretation of Z Syntax
e The environments in the LP and in Z are denoted by: prp, pz

respectively.
e The environments are functions from variable (names) VAR to
domain values: prp : VAR + Dip, pyz : VAR + Dy;

® Pz =YOpLP;

and

Ecplz +y{z — 2,y — 4}

is implemented by

<—exp=x+y & (x=2) & (y =4)

K»BQ evaluated by means of {z/2,y/4} to ‘6’.

~

Interpretations of expressions are denoted Exp|[. . Jprp; €[- lpz
Example: The LP interpretation is according to the LP semantics:
the syntactic expression: ‘z + y’ in the LP is interpreted as a term

10

4 N

Comparison of Interpretations The Z interpretation is the
interpretation we would expect if we had been evaluating the
objects using set theoretic (ZF) considerations -it also evaluates to
6.

e For terminating computations (in the LP) the two interpretations
should be equal and this can be formally expressed by the following
equality, where ‘€’ is a piece of syntax.

v(Ecplelprr) = Ez[el(vo prp) .
e To illustrate we apply this to the above example:

LHS = v(&cplz + y{z 2,y = 4}) =~(6) =6
RHS = &z[z + y](yo{z— 2,y +— 4})
=E&z[z + y{z —=(2),y = (4)} =6.

_ /

11

4 N

e The syntax above is an example of an arithmetic expression -
other syntactic expressions of Z to be interpreted are set
expressions. The interpretation of schemas and predicate
expressions are presented later.

e However some of the computations (and hence interpretations in
the LP) will be non-terminating - so we need to extend the LP
domain - see later;

e Since a comparison is to be made - the Z domain also needs
extending to accommodate non-terminating computations.

e Formula * is a particular case for terminating computations. For
non-terminating executions we introduce a ‘bottom’ element L for
each type in both Z and the LP. The next slide shows

approximation in a pictorial fashion.

_ /

12

\ Erple]l—

Figure 1: Approximation Diagram - where p is a variable

associated with a specification, and prp € Envp .
(Envz == VAR -+ Dy is defined similarly.)

-

mﬁehﬁ Nuhw
i >
yo— Y
I Y
_]
Y . =
Envy Ez[e]— D,

Envpp == VAR + Dpp is the set of all possible LP environments

/

13

4 N

e The approximation expresses the underlying concept of ‘safeness’
in abstract approximation, that a computation in Dyp should
never provide more information than the result obtained by the
evaluation of an expression in Z. This is in order that no incorrect
information is output. The comparison is in the Z domain;

e Abstract approximation and abstract interpretation are similar in
that they both represent an abstract and concrete interpretation of
a piece of syntax;

e For abstract interpretation, the abstraction is a set descriptor,
whereas for abstract approximation integers, sets, tuples in the
abstract correspond to integers, sets, tuples in the concrete.

_ /

14

4 N

Z Syntax

e We consider the following four parts of the Z syntax:
Expressions, Predicates, Declarations Schemas and Axiomatic
Definitions denoted expr, pred, decl, schema, axdef respectively;

e It is convenient to treat declarations as syntactic objects, as
suggested in [BB94]|;

e Suppose the set of schema names is NAME, and the set of
variable names (within a schema) are VAR and the set of given set
names (and enumerated free types) is GIVEN. The following is an
outline summary of the Z syntax to be interpreted.

_ /

15

\2 umerical and Set Expressions in Z Syntax /

expr ::= 7 | n € Z the integers and integer values

t1 +t | 4 —t2...| an integer expression
G; where G; € GIVEN a given set reference
z; where x; € VAR

{x1 ...z,} an enumerated set

(t1,...,tn), a tuple

HUG [Ntk |Ut]...

set union, intersection, distributed union etc.
| “Enum_Type =21 | ... | x,”

where x; € VAR, Enum_Type € GIVEN
an enumerated free type
... etc

NB Set comprehensions of the form {decl | pred e term} will be

@.mm&mm separately -later. \

16

-

-

~

Declarations and Predicates
Recall that in Z everything is typed - ‘z : X’ is a ‘basic declaration’
and that schemas can also be ‘referenced’ as part of a sequence of

‘declarations’:
basic_decl = x1,...,z,:t]| Sch
decl := bdy; ...; bd, where bd; € basic_decl.

Predicates have the following syntax, where

p1, P2 € pred, ey, ea € expr:

pred == p1 V p2 | p1 A po

| “V'd | preps” | “dd | py @ pa” where d € decl

imunmw i e1 C es imummw.

/

17

ho_pmgm Syntax /

A ‘schema named Sch’ is a declaration (d) followed by a predicate

(p) :

_Sch
d

b

and this can be expressed Sch = |d | p]
schema = “Sch=|d|p|” |0Sch|{Sch e 0Sch}
where d € decl,p € pred, Sch € NAME
| “Sch = Sch' A Sch?” | “Sch = Sch! v Sch?”
where Sch, Sch!, Sch? € NAME

axdef = Z | 3“ where d € decl,p € pred.

_ /

18

4 N

(3) Z Domain

e The standard Z domain consists of:

(1) Integers and sets of integers;

(2) Tuples ;

(3) Enumerated free types (enumerated sets);

(4) Booleans Boolz = {tt, ff} (etc.)

e In order to animate given sets the user of the animator is
required to instantiate them with suitable values and these are
added to the specification - as enumerated types.

e The variable and schema names will subsequently be interpreted
as constants in Dy p, (which means confining them to upper case).

_ /

19

4 N

Schema Bindings
e Consider a schema Sch = [d | p] whose declaration d involves n

variables named X;, ¢+ = 1..n with their types.
e The ‘binding’

<T1=>A1,...,0n = Gp > .

provides values of z; which satisty p.
e This object is represented more simply by the symbol table

ANHI&.T..JNSLM@:W

which is part of the existing syntax of Z. Notice we use X, z for
variable name and value. However - in what follows (where

possible) we shall just use z as denoting a variable value.

_ /

20

4 N

(4) The Logic Programming Domain

e The proposed abstract domain, Dy p, includes representations of
integer values, instantiated values, tuples, bindings and sets;

e The interpretation is of schemas and results in an output - and is
confined to schema bindings, as described in seminar 1. Thus
evaluations of arithmetical, set and expressions other than these,
take place as part of a program execution to determine or check
schema bindings.

e n-Tuples are represented by functions of arity n and sets are
represented both as terms and as answer sets. (See later.)

e The variable and schema names will subsequently be interpreted
as constants in Dy p, which means confining them to allowed
constant names in the programming language (and therefore upper

case).

_ /

21

4 N

The LP Domain - Output of expressions

Drp ::=m, m an integer

g¥, where each g¥ is base Gk

Tn(zy,...,x,) where xi € Dyp, a tuple

{x1,..., 2y} where xx € Dpp,xx # L, an set term
Bind;(X;, z;) where x; € Dpp, X; € VAR

a single variable binding

| [b1,..., b, |, where each b; is a variable binding
this is a schema type — — a list of variable bindings

_ /

22

-

Set Objects in the LP
e Set terms: in the LP (finite) set terms are represented (first of

all) by terms:
{x1,22,..., 25}, 0r z1 0 (... (2n 0 Null))))

where each z; is itself a term and Null = &. (See [MW85].)
e Sets of answer substitutions: recall that for some schema Sch, a

binding is denoted in the LP:

6Sch = |Bindy (X1, 1), ..., Bind,(Xn, T,)]
where x, € Dyp, X; € VAR, Sch € NAME

and that the answers to a query concerning the characteristic
predicate of Sch provide a set of answers which depends on the

values instantiated.

-

23

4 N

Example: A small file system involves a single given set:

|Fileld)]

of file identifiers. There are a maximum number of files:

_ MaxFiles : Ny

We define the file system in terms of its state variables which are
Files, and Count, a count of the files. The former is a finite subset
of Files and the latter a number.

___FileSys
Files : F Fileld
Count : 0.. MazFiles

Files = Count

24

4 N

Example:

% test of schema FileSys

[Demo2] <- SchemaType(b, FileSys).

% the initial state

b = [Bind1(Files,{}),Bind2(Count,0)] 7

% second schema binding - a further state
b = [Bind1(Files,{F1}),Bind2(Count,1)] 7
h b etc

In this case all states will be generated eventually and the possible

inputs which are associated - all answers terminate.

The concretisation mapping v is defined next.

_ /

25

4 N

Concretisation Function ~

v(m) = m,m an integer

v(9) = g¢,9€ G,

a member of a given set G

Q:&T...T&:wv — AQAHHY..JQA&:VT

Y(Tn(xy,...,2,)) = (v(z1),...,7(z,)), a tuple
v([b1...bn]) = { X1~ ~v(11),..., Xn — v(zy)}
where b; = Bind; (X, x;), a single schema binding

v(L) = 1 non — termination see later

_ /

26

4 N

(5) Undefinedness and Ordering
In order to accommodate non-terminating executions, both 7Z and
the LP domains are extended by the inclusion of a ‘L’ element for

each type. For example the booleans:

Bool = {tt, ff, L}

This means that ALL functions are total. (Z can similarly be
extended.) ‘1’ also denotes a value of an unknown variable during
some state of the program - for example initially.

For example:

if VAR is {X,Y,Z} with X, Z both instantiated to 0 and Y
unknown then the LP environment is ‘{X — 0, Y — 1, Z — 0}".

The equivalent Z environment is then
YX = 7(0), Y —»~4(L),Z - ~4(0)} ={X —0,Y —» L, Z — 0}

_ /

27

4 N

Ordering
There is an imposed ordering in respect of all types of domain
elements. For example if a, b are integers or members of given sets

then the ordering LC is
aCbs (a=1ora=0).
The ordering relation works co-ordinatewise on tuples. Since the

formalisation involves set terms, we need to consider the ordering

with regard to sets

_ /

28

\Amv Complete and Incomplete Sets

Sets can be ‘complete’ but contain incomplete elements:
Complete Sets: For example {1,2,3, 1,4}.

The ordering relation can be expressed formally:

@Hmwwﬂv

For example, {1,2,3, 1,4} C {1,2,3,4,5}.
Incompleteness in Sets: LP examples

them, for example {1,2,3,4}y, .

(Thus sy denotes an incomplete set.) The ordering for

‘incomplete sets’ is as follows:

-

A<&H”@HOM_&MHGMO&Hm&wv>A<&w”@wom&H”@HO&MM

Sets can also be ‘incomplete’. The notation (by [BB94]) is to ‘tag’

AUHVCFWQMAHVAQHVCFmANwwVCFAHvA,Q&H“Nvuom_&w”@wo&u_u

~

/

29

4 N

We ‘refine’ an incomplete set if we complete it or (in addition) we
add some more elements: For example,

{1,2,3,4},1 C {1,2,3,4,5}.

{1,2,3,4},1 C{1,2,3,1,4,5}.

In general the incomplete sets are ‘non-standard’ with respect to
ZF.

For example use the definition to compare {1,2,3,4},, and
{1,2,3, 1,4}y .

Two sets are ‘equal’ — however they do not have the same elements.
(It could be said that the two sets contain the same ‘information’ —

see [GS90].)

_ /

30

hboogﬁ_m_um Sets — examples /

The Z and LP domains are both extended to contain incomplete
and undefined elements. The LP domain contains ‘sets as terms’
and also ‘answer sets’.

Set Terms

The following are two examples of set ‘incompleteness’. In the first
case the set contains _L:

(Lo(zyo(...(z, o Null))))

In the second case when a computation of a set term fails to
terminate, in an attempt to evaluate an infinite set for example, we
obtain the set denoted by:

(z10(...(xp0...))).

In both cases the set evaluates to ‘L’ since functions are strict.
/HEm bottom element is designated Null, to distinguish it as a mmﬁ\

31

-

We have, for all set a:

a U Null, = Null, Ua = Null|
a N Nully, = Null, Na = Null|
a C Null,

(The LP implementation of such an output may be a warning
message.) Note that the above applies to terms in an execution
which fails to terminate, rather than to terms in their initial

program state, for these may very well be undefined.

-

32

\

Answer Sets
An answer set can output some results then fail with an error

message. An example would be a schema

__UnDef

X,Y: N

Y €{1,2,3}
(X=1)Vv(X=3)V({X,1,23}={1,2,3,4}))

This should result in the set of bindings:

<X=>1,Y=>2>,..<X=>4Y=>3>}

-

~

(< X=2>1,Y=>1><X=2>2Y=>1>,<X=2>4Y=>1>,

/

33

\\\\

When animated this results in:

%hx =1,
hy=17;
% x =3,
hy=17;

% Delayed on: v_1

order).

-

[Demo2] <- SchemaType([Bind2(X, x), Bind2(Y, y) 1, UnDef¥

%» Floundered. Unsolved goals are:
% Goal: {v_1,1,2,3}={1,2,3,4}

Whether the answer set contains some or indeterminate answers

depends on the way it is evaluated (generally it echoes the code

~

/

34

4 N

e Thus there is no way of knowing, from the output, the nature of
the rest of the set.

e This set is an example of an incomplete set (as above) and is
denoted |,

A@f @Muvcl_u

where b1, by are the two schema bindings output before the error

message.

_ /

35

4 N

(7) Proof Method - Structural Induction

Figure 1 represents the fact that if € is a syntactic Z expression
then the following condition must hold for a correct animation of Z
in Dy p:

Approximation Rule 1 (**)¢

Y(Ecplelper) T Ez[e](y o prp).

The strategy for proof involves structural induction and the next
slide presents 3 conditions (derived by [BB94]) which form the

basis of a structural induction rule.

We need a different approximation rule for ‘incomplete sets’ but that will

not be considered here

_ /

36

sosamios 1 In order to prove correctness it is necessary to mwoé/
that the interpretation in Dy p is built recursively for each
operator of Z, acting on each syntactic Z expression.

fuop(Ecplz]prr) = Ecplfr]pLp

Condition 2 A further condition is a property of Z, i.e. the

manner in which expressions in the Z domain are evaluated:
fz(Ez|z]pz) = E=|fx]pz-

However this condition is only true for complete sets and is not

in general true for incomplete sets;

Condition 3 The third condition is the key one, which
encapsulates the approximating mechanism:

Y(fre(Ecplz]prp)) E fz(v(Ecplz]pLp)).

/wwooﬁ (for reader) \

37

4 N

e This means that if it can be shown that ** holds for syntactic
variable ¢ = z, then it also holds for syntactical expression € = fz.
e For example, f might be the syntactic operator ‘U’ on variable
tuple € = (1, z2). We denote by fz, frp the interpretation in the Z
domain and LP domain respectively of the syntactic expression fz.
e Thus if fr is set union, then fzz is the set theoretic evaluation of

set union and f;pz is the induced operation in Dy p of set union.

_ /

38

-

Only the novel or most salient parts are presented here. The

induction takes place in the following order:

1. Numbers and numeric expressions;

2. Set expressions;

3. Predicate expressions: infix;

4. Set comprehension and variable declarations;

5. Predicates: quantified expressions (which depend on

declarations);

6. Schemas and Schema Expressions.

~

Induction is over each Z construct and is shown in full in the thesis.

39

4 N

(8) Proofs — Induction

Example (i) Integers

Mazint, Minint, are the largest positive and negative integers
available. Any attempt to exceed them will cause the computation

to terminate. Thus for m &€ Z:

Ecplm]prp = m = Ez[m]pz, — Minlnt < m < MaxInt
Ecp[m]pLp = L, m < —Minlnt or m > MaxInt.

(L may be implemented by the output of an error message, or
alternatively to the character oo. The latter is suggested by the
IEEE floating point standard.) Thus since vy(L) = L:

V(Ecp[mlprr) T E2[m]pz, m € Z.

_ /

40

-

-

Example (ii) Sets of integers and of given set elements s
For sets of integers, the result is similar to the result for single
integers: if the memory bounds are exceeded, the computation
results in 1 and underestimates the Z interpretation;

Given sets and their instantiated elements
Suppose G, g is a given set and typical element. These are
interpreted in the LP by base type G, associated constant ¢ and

v(EcprlglpLr) =g
V(Ecp|GloLp) =v({z : IsG(2)}) = G.

~

predicate IsG. In each case the abstract interpretation is exact for:

/

41

4 N

Integer and Set Expressions

e For any computation, if the memory bounds are exceeded, the
computation results in 1 and underestimates the Z interpretation;
e For integer expressions, such as addition, subtraction, two cases
are considered, the case where all integers are within the

MinInt, MaxiInt of the LP implementation, results in an exact
approximation.

e In the case where the integers exceed these bounds, the LP
evaluates to ‘L’ and always underestimates the Z interpretation.

e The case is similar for set expressions - we use ‘set union’ to

demonstrate the proof.

_ /

42

4 N

Example (iii) Set Union: ‘z; U o’

For terminating computations we use the three conditions.
Condition 1: recursive nature of LP interpretation. The function
‘frp is ‘union’ acting on the tuple (z1, z2) and supposing that

T, — a1, T — az € prp. In Godel, ‘union’ is provided by a function
‘+’ (denoted by Uzp)

The expression z; Urp x» is evaluated using the LP ground
substitution {z; /a1, z2/as} so that (xy Urp z2){x1/ 01,22/ a2}
evaluates to (a; Urp az). We assume that Ugp is set-theoretic and
implements U for finite sets in the same manner as U for ZF.
Condition 1 becomes:

fop(Ecpl(z1,22)]pLp) = a1 ULp a2 = Ecpr1 U 2] pLp,

which will hold for set operations for terminating computations.

_ /

43

4 N

Condition 2
If z1, 22 are complete sets, y(z1, 22) in Dz evaluates in the expected

way to (v(a1),7v(a2)) and

fz(Ez[(m1,m2)]pz) = v(a1) Uz v(a2) = Ez[m1 U 22]pz.

Since Uy p is set-theoretic then v(a; Urp a2) = v(a1) Uz v(az) and
Condition 3 becomes:

v (fep (Ecp[(21, 22)]pLP))
= (a1 Urp a2) = v(a1) Uz v(a2) = fz(v(a1, (a2))) =
fz(v(Ecp(z1, 22)]pLP))-

In other words the computation is exact for terminating

computations.

_ /

44

4 N

For non-terminating computations we interpret figure 1 directly.
For example suppose:

1 — {a,c, L}, 2o — {c,d} € pz, then these become

z1 = {v(a),v(e),v(L)}, 22 = {¥(c),v(d)} € prp.

Each of the set expressions is a term so

z1 = {v(a),7(c), (L)} = Null,
and the left hand side of ** for e = 2; U 25 is

v (Nully Urp {v(c),7(d)}) =~ (NullL) = Du..
The RHS is {a,c, L} Uz {c,d} ={a,c, L, d} (assuming ZF) which
will always exceed &, . The result is similar for ‘incomplete sets’.

Since we have established conditions (1 — 3) for complete sets and
** directly for incomplete or infinite sets, then ** holds when ‘f’ is
‘.

_ /

45

@ N

Predicate Expressions

e We denote by P.p[plprp the interpretation of syntactic
predicates p in LP domain.

A predicate evaluates to L when a program flounders or fails to

terminate during its evaluation. Thus if

Booly = {tt, ff, L}, Boolpp = {true, false, 1}
then
v(true) = tt, y(false) = ff, v(L) = L.

We also have:

Prep|P1 A Polprp = (Pep[Pilprp & Prp|Pa]prp = true) <
((Pep[Pi]prp = true) & (Pep[P2]pLp = true)).

_ /

46

4 N

Infix Predicates

These are equality, subset, membership:

=, C, €.

e Predicates can both provide a boolean answer and update the
environment, from ppp, to p7 p (say).

e It can happen that the environment can be updated in a number
of different ways, thus providing a set of answer substitutions.

e As a result of the resolution inference rule of logic programming,
the update is extended to all literals conjoined to the literal being
evaluated.

e It is presented in the form of three constraint satisfaction rules.

(See next slide.)

_ /

47

-

-

~

Suppose 7 is an infix predicate, standing for equality, subset or
membership. Then if either (or both) z; or x5 is undefined or only
partially defined they can become ground through resolution. We
call this property:

Constraint Property 1:

PrrleiZx]prp = PeplaiZz]pr p = true

where pp = prp ® {21 — a1, 22 — az}.

The environments of predicates conjoined to the infix predicates
are also enhanced:
Constraint Property 2:

Pep[P A (21Z22)]prp = Prp[(m1Zx) A Plprp = Pep[Plo}p

/

where p7p = prp ® {21 — a1, 22 — a2}

48

%% An example which illustrates both properties /
[Lib] <- ([1, 2, 3, y] = [1, x, 3, 4]) &z =x + y.

X = 2,

y = 4,

zZ =67 ;

An extension of these properties is the case where 71 can take many
values. The different values contribute to different answer
substitutions. Examples are subset and membership. We call this:
Constraint Property 3

PrplriZaz]prp = PeplriZxs]p)p = true
Prp[P A (21Zx)]prp = Prpl(m1Za2) A Plprp = Pep[PlpLp

where

o =prp®{zi— a}Vpp=prp®{z— a} V...
V pp = prLp ®{z1 — a, }where pip € Envyp.

_ /

49

4 N

%%k For example:
[Lib] <- z In {2, 3, 4} & y = 2 *z.

z =4 7 ;

No

The same constraint properties can be extended to the Z

environment.

_ /

50

\mEBEE.u\ - Structural Induction: z;Zz /
e Assuming that the execution terminates, and 7, 2o take unique
values, we can summarise, thus.

e There are three cases for z;, 75, depending on whether or not

x1, 2o are defined prior to execution of equality function and in each

case * is true.

Equality: If ‘f’ is the syntactic predicate = for variable (z;, zo):

* holds for (z; = x2);

Subset If ‘f’ is the syntactic predicate C for variable (1, z2):
* holds for (z; C x2);

Membership * is true where ‘f’ is the syntactic predicate € for
variable (x1, z2); the LP interpretation of € underestimates the

Z interpretation as required.

_ /

51

4 N

Variable Declarations
Variable declarations occur within (for example) schemas:

: |pe L where d is a declaration, p is a predicate and ¢ a term.

d is of the form:
L1 :T1y X2 T2y «o oLy « Tp.

Other examples include set comprehensions, and quantified
ETPTeSSIONS.

The declaration results in a single tuple of values (zy,...z,) being
generated (or tested in the case of schemas). Each value is

constrained by p and used to evaluate ¢.

_ /

52

hbﬁmwﬁwm_“mﬂos of Declarations /

e D,p gives the interpretation in Dy p of syntactic declarations

x : 7, where z is a variable and 7 is set-valued with value provided
by prp.

e The evaluation function is built recursively and interprets in a
similar manner to the infix predicates defined previously, for
variable values generated by the declarations will update the
environment.

e The declarations are treated as predicates. (The declarations
considered here do not include schema references, for these are
treated separately.)

® 7 1S a set:
Deplz : mlprp = Peplz € TlpLp-

‘z : 7" has the effect of either testing a value or updating the
/msigsgma as in the case of the membership predicate; \

53

(. N

7 is a Power Set, 7 = P71’ say:
Deplz :P7']prp = Peplz C 7'lpLp.

‘T : P71’ 7 uses a ‘subset’ test rather than a ‘membership of power
set’ test for reasons of efficiency. It has the same effect on the
environment as the subset predicate;

o 7 is a Cartesian Product, 71 X To:

Deplz : 11 X m2]prp = Peplz = (21, 22)|pLp
& Peplz € Ti)prp) & Prplz2 € T2]pLp).

‘T2’ captures a representation of ordered pair (as an example of a
tuple) in the LP. In our Gdédel library this is ‘OrdPair’.
The proof of correctness for declarations is based on an equivalence

between a sequence of declarations and an expression involving

ﬂ&mﬁiwima union. \

54

\mmﬁ comprehension /

{x1 :71; 20 : T2 . Xy Ty | D@L}

e Each z; : 7, provides a value which contributes to the tuple
(z1,...z,) which is used to evaluate t.

o If s={d|pet}isa syntactical set comprehension it is
interpreted:

Drp as Ecps]pLp

Dy as Ez[s]pz.

Each of these interpretations is respectively dependent on its
constituent D,.p, Dz where the declarations act as generators for s.
Since declarations in the LP are treated as predicates, then the set

comprehension of s is interpreted in the LP:

Ecplslorp ={Dcpld]prr & Prplplorr ® Ecp(t]prpr}

_ /

55

-

This way of writing a set comprehension in the LP is chosen so

would be coded in Godel s = {x : p(x)}.
The environment p;p inside the comprehension is the variable
which acts as a set generator, for recall that

@hﬂ:& : \;bhw = ﬁhﬂ:& c ﬂﬁbhw.
A similar interpretation is true for D.

-

~

that it resembles set comprehension in Z. It differs from the way it

56

4 N

Interpretation of Schemas

e Suppose that the syntactic object schema are interpreted in the
LP and in Z by Szp, Sz respectively.

e A schema can be represented (in its horizontal form) by the
following syntactic object:

Sch = Tut ...; D, _ Oﬁg
where Nus = Ns . Ti, and CP ::= Qﬁp ANEAN Qﬁg
e Recall that X, is a variable name and that the output

(interpretation) of the schema is a set of variable bindings, where
each binding is denoted respectively by Bind;(X;, z;) and X; — z;.

_ /

57

4 N

e Sch evaluates to a set expression, of bindings of variable name(s)
to values. The bindings are constrained by the variable declarations
and by the schema predicate.

o A set of schema bindings of Sch can be represented in Z (as

suggested in [BB94]|) by a set expression:

(Xy:71; o3 X i T | CP @ {Xy > 2,..., X v 2}).

We assume that the set of bindings is constrained by an initial
imposed environment p° where p° can contain defined values of all
the schema variables (as in the case of the assembler or just some
of them (as in the case of the Unix file system).

_ /

58

\Hbm interpretation Sz[Sch]p% of the schema Sch = [D | CP] is /

the interpretation of a set expression:

%Niuﬁ c 71 ... Xp Th _ Qﬁ:nm
=Ez[{X1:m; .5 Xpn i _ CP
[ANH = I, .. .“NS — Hﬁwx_bmu

The interpretation in the LP is

%hl:uﬁ TR, CAH _ @U;bmw
=Eep[{X1:m; ...; Xy i 7y | CP
o ﬁmsﬁ\&u ANT &Hvu Cee msﬁ\&ﬁAN:“ H:V_H;\QMNUQ

for [Bindy (X1, 1), ..., Bind,(Xn, Tn)]
replaces {X; — z1,..., X, — z,}. The interpretation of schemas

and schema expressions is in terms of a characteristic predicate,

/Eoi%bm a single binding for a schema expression. \

59

swpmamoﬁmimﬂo Predicate for a Schema Expression /
%hl:uﬁ P T ... Xp i Ty _ Qmu;bmw

evaluates in the LP to bindings of variable names to values. where

the initial environment p° acts as a generator for other, possible

environments: prp where each enhanced environment prp € Envrp
satisfies

Dep[X111 o5 Xn T]0%Yp & Prp[CP]p%p =
Deploy i m1; o5 2n s To]prp & Pep[GCP]pLp.
The characteristic schema predicate of Sch is as follows:
SchemaType(binding, Sch) <
(binding = [Bindy (X1, 1), ..., Bind, (X, z,)]) &
Deplri s --o5 zn t To]prp & Pep[GCP]pLp,

where GCP is defined as CP where all the free occurrences of

/NH ... X, are replaced by z1 ...z, \

60

\o@@ow x; which satisty SchemaType has either been generated oH,/

was part of the initial environment.

e The generated values have been obtained via the application of
Constraint Properties 1 - 3 defined previously. Note that
although the schema definition in the LP uses ‘if’ (+), by the
CWA this has the same effect as ‘if an only if’ (&).

The Z interpretation can similarly be represented by a set of

bindings where

binding = { X1 — v(z1),..., Xn — v(zn) }.

The values v(x;) € ran py satisfy

Dz[D1; ...; Dplpz AN Pz[GCP]pz.

It is worth investigating how the above would apply to a schema,

K»ba the one chosen is FileSys. \

61

-

\A@v Interpretation of FileSys

This can be written horizontally as:

~

FileSys = ﬁm_&mm . F Fileld; Count : 0 .. MaxFiles _ # Files = QQSL :

Suppose that MaxFiles = 10 is a value provided by the animation
user, and that Fileld is instantiated as {F'1, F2, F3}. Then

Drp|Files : F Fileld; Count : 0 .. MazFiles|p$ p

= Prplfiles C{F1,F2,F3}]|p%p & Prp[count € {0..10}]p%p.

If we substitute these values, a binding for FileSys is given by:

Schema Type(binding, FileSys) <
(binding = |Bindy (Files, files), Binda(Count, count|) &

ﬁhﬂ:\w&mm C ﬁmﬁ—u Nﬂ_wu NHWHLEMNU & ﬁhﬂ:n@@ﬁ\w < AO e Hoz_bwwm

Prp|#files = count |pdp.

e

/

62

a

Ini

-

tially, p9 p = {files = L, count — L}.

During the execution, files is of type I so becomes evaluated
through the interpretation of its declaration:

files C{F1,F2,F3}.

Similarly for count.

A binding of FileSys can be expressed:

binding = |Bind, (Files, files), Binds (Count, count] &

~

Prplfiles C {F1,F2,F3}]p%, & Prp[count € {0..10}.]pS

Prpl#files = count |p%p.

Thus if files evaluates to {F'1} (say), then in order to satisfy the
schema predicate and its declaration, count, evaluates to ‘1’ since

#files = count & count € {0..10}.

/

63

L &

4 N

Substituting these values yields:

binding = |Bindy (Files, { F1}), Binda(Count, 1] &
Per[{F1} C {F1,F2,F3}prp & Pep[l € {0..10}]prp &
Per[l =1]pLp,

where prp = {files = {F1}, count — 1} is the enhanced value of
the environment and

binding = |Bind, (Files, { F1}), Bindy(Count,1)]

which was one of the values actually obtained. The full set of
bindings can be obtained from the full set of answer substitutions,
as was indicated previously.

_ /

64

4 N

Initial Environment

e For the ‘complete’ assembler, the variables were initially all
ground, so that p{p contains no undefined values and the
environment is unaltered: prp = p?p, where similarly pz = p?.

e For the Unix file system, and for the two-phase assembler, for
each of the schemas considered some variables are ground in p$ p,
and some are determined by the execution.

_ /

65

4 N

Approximation for Schemas

*% can now be considered for schemas: Sch = | D | CP | where f is
a syntactic operator which forms a schema from tuple ¢ = (D, CP),
where D is a declaration and CP is a predicate. We denote by

fz, fr.p the interpretation in the Z domain and LP domain
respectively of the syntactic expression fr. Thus the left hand side

of ** is

Q?m,hﬁikm 71 . Xyt Th _ Qw;bmwv
=y Ecp[{xr :T1; -0 Tp 1 Th _ GCP o
ﬁmsﬁ\&uAN@u&Hvuumsﬁ&zANS“H\;ZwﬁbMﬁv

66

4 N

The right hand side of ** is

%Niuﬁ :T15 ... Xp t Th _ Qﬁ:mm
=Ez[{xy:7m1; ... T i Th _ GCP e {X1 — x1,..., Xp — z,}}] 0%

This is a set comprehension, which has been treated previously.
These interpret exactly where components are finite and complete
(as in the case of FileSys).

For incomplete answer sets the LP underestimates as in the case of
UnDef.

_ /

67

N

4 N

Conclusions

e A set of translation rules from Z to Godel was presented in the
first talk and shown to be practical. In this talk the rules have been
provided with a formal basis.

e Correctness Criteria have been applied and the rules shown to be
correct.

e The potential of the rules and the animating language, Godel for
contributing to an effective tool have thus been demonstrated.

_ /

68

-

Further work

Extension of the rules and proofs;

The development of meta-interpreters and techniques of

~

inductive logic to trace and correct flaws in the specification as

in MWO1];
Automation of the rules;

A strategy for selecting test cases for animation, including
(where possible) the automatic generation of test cases;

An interesting area of work would be the investigation of a

functional logic language for animation purposes as suggested
in [WDK98].

/

69

References

[BB94]

[CCTT]

[CC92]

(GSY0]

P. T. Breuer and J. Bowen. Towards Correct Executable Se-
mantics for Z. In Z User Workshop, Cambridge, June 1994,
pages 185-209. Springer-Verlag, 1994.

P. Cousot and R. Cousot. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction
or Approximation of Fix-points. In Proc. 4th ACM Symposium

on the Principles of Programming Languages, pages 238252,
1977.

P. Cousot and R. Cousot. Abstract Interpretation and Appli-
cation to Logic Programs. The Journal of Logic Programming,
13:103-179, 1992. The editor of Journal of Logic Programming
has mistakenly published the unreadable galley proof. For a
correct version of this paper, see http://www.di.ens.fr/cousot.

C. A. Gunter and D. S. Scott. Semantic domains. In J. van
Leeuwen, editor, HandBook of Theoretical Computer Science:

09-1

[Hog84]

L1087]

IMWS5]

MWOL1]

[PP99)]

Formal Models and Semantics (Vol B), pages 635 — 674. Else-
vier, 1990.

C. Hogger. Introduction to Logic Programming. Academic
Press, London, 1984.

J. W. Lloyd. Foundations of Logic Programming (Second, Ezx-
tended Edition). Springer-Verlag, Berlin, 1987.

Z. Manna and R. Waldinger. The Logical Basis for Computer

Programmang, Vol 1: Deductive Reasoning. Addison-Wesley,
USA, 1985.

T. L. McCluskey and M. M. West. The automated refinement
of a requirements domain theory. Journal of Automated Soft-
ware Enginnering, Special Issue on Inductive Programming,

8(2):193 — 216, 2001.

A. Pettorossi and M. Proietti. Synthesis and transformation

of logic programs using unfold/fold proofs. Journal of Logic
Programmang, 41:197-230, 1999.

69-2

[(WDK98] M. Winikoff, P. Dart, and E. Kazmierczak. Rapid prototyp-
ing using formal specifications. In Proceedings of the 21st

Australasian Computer Science Conference, ACSC’98, pages
279-293. Springer, 1998.

609-3

