
An Interactive Method for Inducing Operator Descriptions

T. L. McCluskey, N. E. Richardson and R. M.Simpson
School of Computing and Mathematics

The University of Huddersfield, Huddersfield HD1 3DH, UK
lee,scomner,ron@zeus.hud.ac.uk

Abstract

Specifying operator descriptions for planning domain
models, especially using standard pre- and post con-
dition symbolism, is a slow and painstaking process.
This is because one is trying to capture what is essen-
tially procedural knowledge in a declarative way in a
language whose design is influenced by the construc-
tion of planning engines. The problem is acute if non-
planning experts are undertaking this task, and/or the
operators are complex or hierarchical. In this paper we
describe opmaker, a method in which the domain ex-
pert specifies the declarative structure of the domain
(in terms of an object hierarchy, object descriptions
etc) and provides training operator sequences. This
input is made in the context of a tools environment
supporting planner domain acquisition and modelling.
opmaker then induces a set of parameterised operator
descriptions from these examples, removing the need
for the user to become involved in complex parame-
ter manipulation within the underlying symbolic, logic-
based language. We discuss the empirical evaluation of
the implemented induction algorithm with the help of
a range of domains, and draw conclusions for future
work.

Introduction
Accurately describing a planning domain is a difficult
task for the domain experts if they do not have special-
ist knowledge of AI planning. Realistic planning do-
main models are hard to encode, debug and maintain,
and the development process is laborious. As planners
and planning applications become larger, the problems
of engineering planning domain models become more
acute. Engineering platforms are required that allow
a domain expert to enter domain knowledge at a high
level of abstraction, and to facilitate the gluing together
of planning tools to help in domain modelling (Simpson
et al. 2001; Tate, Polyak, & Jarvis 1998). In particular,
if AI planning is to provide a solution for end-user prob-
lems then a method of construction of detailed domains
is required.

A graphical domain construction and validation tool,
GIPO, (Simpson et al. 2001) has been recently released.
This is an experimental GUI and tools environment for
building classical planning domain models, providing

help for those involved in knowledge acquisition and the
subsequent task of domain modelling. For the former,
it provides an interface that abstracts away much of
the syntactic details of encoding domains, and embod-
ies validation checks to help the user remove errors early
in domain development. For the latter, it integrates a
range of planning tools - plan generators, a stepper, an
animator, a random task generator, a reachability anal-
ysis tool - all to help the user explore the domain encod-
ing, eliminate errors, and determine the kind of planner
that may be suitable to use with the domain. A major,
acknowledged problem with the initial version of GIPO,
however, is that its use by a non-planning-expert dur-
ing the knowledge acquisition phase is limited. Most
difficult for the inexperienced user is to provide the
usual parameterised operator descriptions. GIPO al-
leviates this problem by adopting an object modelling
approach, where the user describes how typical object
descriptions change through the execution of the oper-
ator. This still requires, however, the writer to encode
and track parameters in a detailed way within the body
of operator schema.

One way of alleviating this knowledge engineering
bottleneck is to use induction to acquire operators. An
important success factor for such an inductive approach
is that the induction tool is not seen as “stand alone”,
but is seen as an interactive tool in a diverse tools en-
vironment (McCluskey & West 2001). There has been
comparatively little work done on this in the planning
area, particularly in the context of an overall knowl-
edge engineering method. Notable exceptions include
the the work of Wang (Wang 1995), Huffman, Pearson
and Laird (Huffman, Pearson, & Laird 1992) and Grant
(Grant 1996). In this paper we describe an implemented
algorithm for the induction of parameterised, hierarchi-
cal operator descriptions from example sequences and
declarative domain knowledge. Essentially, the user
supplies examples of action sequences by describing all
the objects that these operations involve. Objects that
have a changeable state are called dynamic. Where
there is a choice of the target state for a dynamic ob-
ject in an operation, the algorithm requires the user to
point and click on that state. The whole process helps
the user abstract away from the particular syntax and

consequential errors, and in particular having to encode
operator schema using a symbolic language with sub-
tle uses of parameters. For expediency we have built a
prototype for inducing operator schema assuming the
usual classical assumptions, although there appears no
reason why the tool could not be generalised to help
knowledge acquisition with more expressive languages.

The Domain Acquisition Process

An overview of the object-centred
approach using GIPO
“GIPO” is an acronym for Graphical Interface for Plan-
ning with Objects, pronounced GeePO and is avail-
able from http://helios.hud.ac.uk/planform/gipo. It
was first demonstrated at the 6th European Conference
on Planning in September 2001 (Simpson et al. 2001).
The role of GIPO is to facilitate first domain knowledge
capture and secondly domain modelling. The latter
process we see as one of developing an existing model to
make problems expressed in the model more tractable
for existing planning technology. Domain acquisition
focuses on allowing the user, perhaps a domain special-
ist rather than a specialist in planning technology, to
adequately capture domain structure. The approach
used in domain acquisition encapsulated by GIPO re-
quires that the user specifies objects, the sorts that the
objects belong to, and predicates that relate these ob-
jects, in the style of OCL (for an in-depth discussion
of this object-centred language and method the reader
can consult the literature e.g. (Liu & McCluskey 2000;
McCluskey & Porteous 1997)). Additionally, and as
important, the user describes for each sort a set of
“typical situations” that an object of that sort may in-
habit as a result of the planning process. We refer to
the definitions of these “typical situations” as “substate
classes”. If one thinks of transitions of an object in the
domain being modelled as arcs in a state-machine, then
each substate class corresponds to a node in the state-
machine. In a simple case, a sort may have only one
such substate class (node). For example, if it is enough
to record only the position of a car in a domain model
then all possible situations of the car may be recorded
as simply “at(Car,Place)”, where Car and Place range
through all car and place objects respectively. On the
other hand, in a hierarchical domain, an object such as
a car may have relations and attributes inherited from
different levels, where each level is modelled as a state-
machine involving different substate classes. Also, the
user is expected to enter more details of the structure
of the domain by describing any known invariants, in-
cluding those instances of domain predicates which are
always true.

The GIPO Environment
To allow the modeller to capture this information in
GIPO we provide an integrated series of editors to con-
struct the various elements of the domain specification.
In the editors we allow the specification to be built up

Figure 1: The Sort Hierarchy Editor

using standard GUI graphical structures in such a way
that the user is never required to deal at the level of
syntax with anything more complex than the rules for
forming identifiers. In GIPO the use of graphical di-
alog construction techniques allows the user to focus
on the conceptual details of the domain model rather
than on the formal description language. In addition
to the editing tools GIPO also provides tools to assist
in the validation of a domain specification. As each el-
ement of the specification is created it can be checked
and cross-checked against other elements of the spec-
ification. We provide dynamic tools to enable users
to check that the domain definition does support the
derivation of plans. To this end we provide integrated
planning engines along with an animator to view the
planners output. A great benefit of the object centred
view is that it allows us to animate the planners out-
put by showing the results as graphs representing state
changes in the objects affected by the application of
operators. To deal with cases where the planning en-
gine does not produce the expected results we provide
a stepper to allow the manual construction of a plan to
allow the user to check that the defined operators will
apply in the situations expected of them.

GIPO is “open” in the sense that third party plan-
ners which take as their input PDDL with strips, typing
and conditional-effects can be integrated into the sys-
tem and their output viewed in the animator. We have
demonstrated this by integrating Hoffmann’s FF (Hoff-
mann 2000) with GIPO without changing any of the FF
code. To enable us to integrate third party planners we
have provided an export facility to save defined plan-
ning domains in PDDL. We are also developing a PDDL
import facility (Simpson et al. 2000). We see the im-
port and export facilities of GIPO as important in that
they allow us to integrate third party tools for planning
or domain analysis into GIPO without requiring that
these tools be developed using our internal representa-

tion language.
We illustrate the use of GIPO by describing elements

of the sort editor, the state editor and the operator ed-
itor. The sort editor Figure 1, is a simple tree editor
to allow the user to describe the sort structure in the
domain with the branches of the tree representing sorts
and the leafs representing objects.

The editor forces the user to categorise the objects
in the domain and allows us to provide software to
verify that the constructed domain conforms to rules
about inheritance and well formed tree structure. In
a similar manner we provide editors to allow the user
to define the predicates in the domain and the sub-
state classes characterising the potential states of ob-
jects during planning. At the point of defining the sub-
state classes of the domain the process becomes more
complex as the user must now deal with decisions about
when variables used in a state definition co-designate.
We try to make the process of defining substates con-
ceptually simple by allowing the user to collect together
the already defined predicates into sets then to select
variables and have the potentially unifying variables un-
derlined. The user can then right click on the under-
lined variables and choose from a menu whether or not
the chosen variable must refer to the same or a differ-
ent object from that of the initial target variable. This
process is illustrated in Figure 2 where we see a state
of a “block” in the blocks world being defined. In the
example we define the state of a block at the top of a
block tower. In this example it is insufficient to describe
the state of the block in terms of the typed predicates
on(Block,Block) and clear(Block) we must require that
the second argument to “on” is always bound to a dif-
ferent block from the other arguments.

Figure 2: Fragment from the State Definition Editor

In the operator editor the problems of co-designation
of variables becomes even more problematic. Op-
erators in our object-centred language are conceptu-
alised as sets of parameterised transitions, written
(S ,O ,LHS ⇒ RHS), where O is an object constant
or variable belonging to sort S , and LHS and RHS are
substate classes. This means that O moves from sit-
uation LHS to situation RHS. Transitions can be nec-
essary, conditional or null. Null transitions are prevail
conditions where O must be in LHS and stays in that
situation after operator execution.

program opmaker(OS: training sequence)
In partial domain model
Out parameterised operator descriptions
1.for each op in OS do
2. form name and parameter list P ;
3. for each dynamic O of sort S in P do
4. get RHS from user input
5. induce necessary substate class LHS
6. form transition T = (S ,O ,LHS ⇒ RHS)
7. match free vars in T with those in P
8. end for
9. for all conditional transitions
10. get LHS from user input
11. get RHS from user input
12. form ‘∀O ∈ S , (S ,O ,LHS ⇒ RHS)’
13. end for
14. end for
procedure match free vars in T with those in P
1. repeat
2. for each parameter X in transition T , X �= O ,
3. choose a parameter Y in P to match with
4. X such that Y �= O , sort(X) = sort(Y),
5. end for
6. until parameter match set is consistent
7. end

Figure 3: Outline Design of the opmaker Algorithm

In the GIPO operator editor we provide a graph rep-
resentation of an operator where the nodes are the LHS
and RHS states of the object sorts involved in the oper-
ator. Each such node contains an editable state defini-
tion. Difficulty arises due to the possible co-designation
of variables across the different nodes presented to the
user. We deal with this by providing the same sort
of underlining and right click mechanism described in
the state editor above, but the process remains complex
and error prone. It is the avoidance of this complexity
that largely motivates the development of the opmaker
method which hides from the user the inherent com-
plexity of operator definition.

The opmaker Method

Inducing Flat Operator Descriptions
We present the opmaker method in two stages. In the
first stage (this subsection) we will explain a simpler
form used in non-hierarchical (or flat) domain models -
that is models in which properties and relations are all
“attached” to primitive sorts and where operator defi-
nitions cannot be decomposed. In the next subsection
we will detail the hierarchical version.

As an illustrative example for the flat version, and
to explain the details of the basic algorithm, we give as
an example the Hiking Domain, a new planning domain
with documentation and description on the GIPO re-
source page. In the variant of the domain we use, two
people (hikers) want to walk together a long clockwise
circular route (over several days) around the Lake Dis-
trict of NW England. They do one “leg” each day, as

% Sorts
sorts(primitive_sorts,

[car,person,tent,place,couple]).
% Objects
objects(car,[car1,car2]).
objects(tent,[tent1]).
objects(person,[sue,fred]).
objects(couple,[couple1]).
objects(place, [keswick,helvelyn,fairfield,

honister,derwent]).
% Predicates
predicates([up(tent,place), down(tent,place),

loaded(tent,car,place), in(person,car,place),
fit(person,place), tired(person,place),
at(car,place), partners(couple,person,person),
walked(couple,place), next(place,place)]).

% Object Class Definitions
substate_classes(person,Person,[

[tired(Person,Place)],
[fit(Person,Place)],
[in(Person,Car,Place)]]).

substate_classes(couple,Couple,[
[walked(Couple,Place),

partners(Couple,Person1,Person2)]]).
substate_classes(tent,Tent,[

[up(Tent,Place)],
[down(Tent,Place)],
[loaded(Tent,Car,Place)]]).

substate_classes(car,Car,[
[at(Car,Place)]]).

% Atomic Invariants
atomic_invariants([

partners(couple1,sue,fred),
next(keswick,helvelyn),
next(helvelyn,fairfield),
next(fairfield,honister),
next(honister,derwent)]).

Figure 4: Partial Hiking Domain Model

they get tired and have to sleep in their tent to recover
for the next leg. Their equipment is heavy, so they
have two cars which can be used to carry their tent and
themselves to the start/end of a leg, if necessary. Fig-
ure 4 is a symbolic representation in OCL of the partial
domain model which was specified using GIPO. Iden-
tifiers starting with capital letters refer to parameters,
whereas identifiers starting with lower case are either
sort names or constants. It contains 11 objects of 5
sorts, with 10 predicates.

We assume that we have been constructing our
domain model, either textually or using GIPO, and
have reached the stage where we have a partial model
as laid out in Figure 4. Assume the following training
sequence is supplied to opmaker . This could be entered
by a user via the GIPO GUI, or it could be acquired
from some other source. The example sequence below
was made up as

• it exemplifies the solution of the simple problem of
the hikers doing the first leg of their tour and being

rested and ready for the second

• it contains an instance of all the required operator
schema, so that the algorithm can induce enough op-
erators to solve the full hiking problem.
putdown tent1 fred keswick
load fred tent1 car1 keswick
getin sue keswick car1
drive sue car1 keswick helvelyn
getout sue helvelyn car1
unload sue tent1 car1 helvelyn
putup tent1 sue helvelyn
getin sue helvelyn car1
drive sue car1 helvelyn keswick
getout sue keswick car1
walktogether sue fred couple1 keswick helvelyn
sleepintent sue fred tent1 helvelyn

Each item in the sequence consists of the operator’s
given name followed by a list of objects that are
involved in the operation. We follow the algorithm in
Figure 3 through for operator “drive”, the fourth item
in the sequence. This operator has conditional com-
ponents in that it may carry other objects. Hence in
Line 2 name = drive, and P is formed from constants
sue, car1, keswick and helvelyn as 4 parameters say
A,B ,C ,D representing typical objects of person, car
and place (twice) respectively. Within the loop starting
on Line 3, for the dynamic object parameter A, the
user will be shown the range of substate classes and
asked to pick one that the object is in after execution
of the operator (there are three classes to choose from
for sort person as shown in Figure 4). Assume the user
picks

[in(Person ′,Car ′,Place ′)]

The algorithm then forms the LHS of the transition in
Line 5 as it tracks the current substate class of sue.
LHS is set to be

[in(Person,Car ,Place)]

as the previous item in the sequence
getin sue keswick car1

left object sue in this substate class. In this case in
Line 6 the following transition is formed:

(person,A, [in(Person,Car ,Place)] ⇒
[in(Person ′,Car ′,Place ′)])

As a special case, the user could have chosen to point
to “null” rather than any of the substate classes in
Line 4. In that case a prevail condition would be
formed in the same manner as the LHS of a transition.
In Line 7 procedure “match free vars” forces Person
and Person ′ to be unified with A, and Car and Car ′
are unified with B , since they are the only parameters
of the correct type in the example operator. Place and

Place ′ are unified with the two different parameters of
sort ’place’ in the example, using a matching heuristic:

Where there is more than one parameter of the same
sort in the example, match them to distinct parameters
in the transition.

This choice of match has to be consistent with any
invariants of the domain model as checked in Line 6. of
the procedure. This check may eliminate inconsistent
choices of parameters for some predicates. For exam-
ple, when building up the “walktogether” operator
(using the eleventh item in the training sequence) the
algorithm is forced to pick independent variables for
the last two “partners” parameters Person1,Person2
in the substate class:

[walked(Couple,Place),
partners(Couple,Person1,Person2)]

as in the case where Person1 = Person2, no “partners”
instance exists.

Returning to the current example, Place,Place ′ are
bound to C ,D respectively, and the final transition is:

(tent ,A, [in(A,B ,C)] ⇒ [in(A,B ,D)])

Using a similar procedure the algorithm induces the
following transition for a car. In this case, since there
is only one class for a car, no user input is required:

(car ,B , [at(B ,C)] ⇒ [at(B ,D)])

The loop exits on Line 8 after two iterations as the
last two parameters are of static rather than dynamic
sorts. For the conditional part of this operator, the
user picks the LHS and RHS substate classes for each
sort affected (Lines 9 - 13 in the algorithm). Since the
main object parameter is universally quantified in the
OCL model for conditional objects, this is selected as
a dummy variable. The conditional transitions are:

(person,X , [in(X ,B ,C)] ⇒ [in(X ,B ,D)]),
(tent ,Y , [loaded(Y ,B ,C)] ⇒ [loaded(Y ,B ,D)])

The final induced operator after execution of the loop
starting in Line 4 is formed from these two necessary
and two conditional transitions. After having been
translated into PDDL by GIPO, the induced drive op-
erator is as follows:

(:action drive
:parameters (?x1 - person ?x2 - car

?x3 - place ?x4 - place)
:precondition (and (in ?x1 ?x2 ?x3)

(at ?x2 ?x3))
:effect (and (in ?x1 ?x2 ?x4)

(not (in ?x1 ?x2 ?x3))
(at ?x2 ?x4)
(not (at ?x2 ?x3))

(forall (?x5 - person)
(when

(in ?x5 ?x2 ?x3)
(and (in ?x5 ?x2 ?x4)

(not (in ?x5 ?x2 ?x3))))
(forall (?x6 - tent)
(when (loaded ?x6 ?x2 ?x3)

(and (loaded ?x6 ?x2 ?x4)
(not (loaded ?x6 ?x2 ?x3)))))))

Inducing Hierarchical Operators
The construction and maintenance of valid knowledge-
based domain models has long been a problem, some
might say a bar, to the use of planning techniques in re-
alistic applications. When encoding such domain mod-
els there appears to be the need to represent:

• a set of primitive as well as hierarchical or HTN oper-
ators. Each HTN operator contains “canned plans”
and various types of conditions.

• a collection of structural (static) domain constraints

• attributes and relations arranged in an abstraction
hierarchy

We use as a target language OCLh (McCluskey 2000),
a language which extends the object-centred features
introduced above. OCLh compares to O-Plan’s TF
in its structuring capabilities (McCluskey, Jarvis, &
Kitchin 1999), yet is amenable to theoretical analy-
sis (McCluskey & Kitchin 1998). As with the “flat”
version of opmaker we assume the user uses GIPO to
create a partial domain model. This model is more elab-
orate, however, in that the complete state of each ob-
ject is determined by relations and attributes attached
to the object’s primitive sort as well as those attached
to its supersorts.

Figure 5 gives as an example part of such a hierarchy
in a transport logistics domain. The name of each sort is
followed by its parameter, with a list of substate classes
underneath. Predicates may be instantiated by choice
of objects of the correct sort for the predicate’s defini-
tion. Only one instantiation of the substate classes at
each level is true of an object. For example, an object of
sort train will therefore have 3 hierarchical components
to its defining state - one component from its primitive
sort, one component from its “railv” (rail vehicle) sort,
and one from the root sort. The hierarchy allows tran-
sitions and operators to suppress details of parts of the
hierarchy if they are not relevant.

The overall method of inducing an operator set is
recursive:

1. the user provides the system with an example se-
quence OS .

2. Any operator names in OS not known are induced as
primitive operators.

3. The generalised form of OS is given a name and
“canned” as a potential hierarchical (HTN) operator.

physical_obj:P
[at(P,L)]

vehicle:VH

truck:TU railv:V

train:T

[available(T)]
[busy(T)]

train:TC

[busy(TC)]
[available(TC)]

package:PK

[certified(PK),waiting(PK)]

[unattached(V)]
[available(TU)]

[busy(TU)]
[attached(V,V1)] [uncertified(PK)]

[delivered(PK)]

[certified(PK),loaded(PK)]

Figure 5: Part of the Translog Sort Hierarchy

Further training sequences may contain the known
HTN operator induced from earlier training sequences.
In step 2., the induction of primitive operators in a hi-
erarchical domain model varies from the algorithm in
Figure 3 with respect to two extensions:

Abstract Transitions: (Line 4/5 in Figure 3)
Firstly, the user may select one or several of the hi-
erarchical components for the RHS of the transition.
Hierarchical components not selected are assumed to
persist, and the LHS is constructed from the system
drawing only on the current state of the object in those
components of interest.

Induction of Statics: Secondly, static constraints
to be put on the operator are induced. The atomic in-
variants in the partial domain model are searched for
any containing a subset of the objects in the opera-
tor’s heading. Any that are found are added to the
operator, after the invariant’s objects are changed to
equivalent parameters to the matching objects in the
operator’s heading. In the Hiking example used above,
the invariant “next(keswick,helvelyn)” would be found
for the “drive” operator. The invariant’s objects would
be generalised to the corresponding parameters in the
operator schema’s heading, and the generalised invari-
ant added to the operator’s prevail condition.

The main addition to the primitive algorithm is an
extra process for the induction of HTN operators.
These operators (called methods in OCLh) are induced
after the primitive operators have been induced using
an example sequence. Note that, as discussed above,
generalisation of a term leads the object constants in
that term to be generalised to parameters which range
through the primitive sort of that object. The process
is as follows:

1. all dynamic objects involved in the items of the train-
ing sequence are represented in the method heading

2. the static constraints are induced using the same pro-
cess as used in primitive operators

3. the transitions of the method are the full generalised

transitions of the whole training sequence
4. the dynamic preconditions of the method are the ini-

tial states of any dynamic objects involved in the
training sequence whose states did not change

5. the decomposition of the method is populated with
the generalised training sequence
An example of an auto generated HTN method is as

follows. This is induced from a training sequence to
move a package to a train station using a truck locally
available:

pay_fees pk_3
commission truck_2
local_move truck_2 city1_cl1 city1_cl2 local_roads
load_package pk_3 truck_2 city1_cl2
move truck_2 city1_cl2 city3_ts1 road_route_42
unload_package pk_3 truck_2 city3_ts1

The generalisation of constants to variables ranging
through the primitive sort of the constant is transparent
in this example as the parameters are formed from the
original constants. Since there is as yet no standard
(PDDL) syntax for HTN operators, we use the OCLh

syntax described in reference (McCluskey 2000):
% name
method(move_package_local(Pk_3,Truck_2),
% dynamic precondtions
[],
% list of necessary transitions
[sc(package,Pk_3,
[at(Pk_3,City1_cl2),uncertified(Pk_3)] =>
[at(Pk_3,City3_ts1),waiting(Pk_3),

certified(Pk_3)]),
sc(truck,Truck_2,
[at(Truck_2,City1_cl1),movable(Truck_2),
available(Truck_2)] =>

[at(Truck_2,City3_ts1),movable(Truck_2),
available(Truck_2)])],

% static constraints
[route_available(Road_route_42),
connects(Road_route_42,City1_cl2,City3_ts1),
connects(Road_route_42,City3_ts1,City1_cl2),
route_available(Local_roads),
connects(Local_roads,City1_cl1,City1_cl2)

],
% temporal constraints
[before(1,2),before(2,3),before(3,4),
before(4,5),before(5,6)],

% decomposition
[pay_fees(Pk_3),
commission(Truck_2),
local_move(Truck_2,City1_cl1,

City1_cl2,Local_roads),
load_package(Pk_3,Truck_2,City1_cl2),
move(Truck_2,City1_cl2,City3_ts1,Road_route_42),
unload_package(Pk_3,Truck_2,City3_ts1)]

Experimental Evaluation
The flat version of opmaker is already integrated into
GIPO and can be downloaded from GIPO’s website for
use. An example screen shot is shown in Figure 6.

Figure 6: A Screen Shot of opmaker within GIPO

The hierarchical version is currently stand-alone, but
results and test runs are also available from the GIPO
website. Our experimental evaluation of opmaker was
designed:

– to compare the accuracy of what was induced with
hand crafted operator sets

– to compare the robustness of the algorithm when
input with different operator sequences

– to test the effectiveness of the tool within an
integrated environment

The Hiking Domain was described using the GIPO
GUI, resulting in the OCL partial domain model shown
above. Then the operators were induced using the
opmaker implementation, using the operator sequence
shown above. A full operator set was generated, pass-
ing all local and global validation checks in the GIPO
system. One error was eventually found in the require-
ments - predicate “(next ?x4 ?x5)” was not included in
the “walktogether” operator. This error was found after
GIPO was used to translate the domain model from its
internal object-centred form into the conditional PDDL
form shown in the appendix. This was fed into Hoff-
man’s FF (Hoffmann 2000), and the solution output
allowed the couple to walk around the Lake District in
one day! The “next” predicate had to be added, re-
stricting the hikers to walk between two adjacent areas
before becoming tired. With this addition, FF gave a
more sensible 54 operator solution sequence in 8 sec-
onds, running on a Sun Ultra 5.

We have performed an initial evaluation of the flat
version with several variants of the Hiking Domain, as
well as the standard Briefcase World, Rocket World
and Tyre World. opmaker induces full operator sets
for each of these domains, given an example sequence
which includes instances of all the operators. For
the Briefcase World, the induced and hand-crafted
sets were equivalent. With the Rocket World, the
same problem occurred as that in Hiking Domain: the
only apparent requirements error was the need for

there to be a route between two cities before a rocket
could move from one to the other. Otherwise, the
induced operator set was equivalent to the hand coded
set. With the Tyre World, 18 operator schema were
induced as expected. Here, the difference between the
hand-crafted and induced OCL operators was that in
operators “undo nuts”, “remove wheel”, and “put on
wheel” an extra pre-condition was introduced:

jack in use(J ,H)

This is in fact is a correct pre-condition, as it is implied
by the rest of the domain model, but it was left out
of the hand-crafted operators presumably because it is
implied.

The hierarchical version has been used to generate
sets of primitive operators and methods for the four
Translog domains used in reference (McCluskey 2000),
and the set of operators and methods in the Drum Store
Domain (available from the GIPO website). Full sets of
primitive operators were induced from partial domain
models, and HTN methods encapsulating the training
sequence. For these domains we found several of the
simple primitive operators equivalent. With the ma-
jority of operators we found differences between the
induced and handcrafted. These fell into three main
classes:

• missing constraints: The induction of constraints us-
ing the objects involved in the transition is approx-
imate, and in some cases includes unwanted con-
straints, and in other cases misses necessary con-
straints.

• missing pre-conditions: The rule of inducing the LHS
of a transition to contain the same hierarchical levels
as the user has indicated for the RHS, sometimes
misses preconditions.

• undergeneralised parameters. The rule of general-
ising constants to variables in the object’s primi-
tive sorts is sometimes too restrictive. For example,
the load package induced operator in the Translog
worlds was only applicable to loading packages into
trucks if the training example used involved trucks.

As regards varying the operator sequences, we found
little variation in the induced operators. Whereas in-
ductive procedures are often very sensitive to ordering
of training examples, the “strong model” within which
the generalisation is taking place makes the problem not
acute in this case. Although the lack of variation and
the accuracy of the induced operators is encouraging,
experiments with the more complex domains uncovered
problems. The hand-crafted sets, the induced sets and
the examples they were induced from are available from
the resource page of GIPO.

Directions for Future Work
opmaker is intended to induce operator schema from
example sequences with the minimum of user interac-

tion. Although our initial tests suggest that this tool
will be very useful in generating operator sets, we ex-
pect it to sometimes make mistakes in its initial gen-
eralisation procedure. From our tests, the main errors
that occurred were ones of generating over-general or
underspecific constraints on transitions.

A simple example from the Hiking world high-
lights this problem. The missing constraint
“next(keswick,helvelyn)” in the walktogether operator
is in fact correctly induced when the hierarchical form of
opmaker is used, as it includes the “induction of stat-
ics” procedure. Also, the “route” predicate would be
added to the “move” operator in the rocket world ex-
ample mentioned above. Unfortunately, while solving
the missing constraint problem with the “walktogether”
and “move” operators, this procedure over-specialises
some operators. For example, the requirement on the
“drive” operator in the Hiking Domain is that we can
drive between any two locations. The instance of drive
in the example sequence above, using the “induction of
statics” procedure, would add a “next” constraint on
the source and destination of the car - leading to an
over-specialisation.

There appears two ways to overcome these problems:
One way is to assume the induced operators are ap-
proximations, and let the user manipulate them us-
ing the GIPO tool. Most of the hard work of assem-
bling the operator would be done, but the user would
still be expected to fully understand the representation
language’s semantics. Another way is to use theory
revision techniques driven by further examples of the
operator’s application. Operators can be incrementally
generalised to cover several examples of their use in hi-
erarchical domains. Theory revision may be used to
overcome other problems such as when incorrect pa-
rameter choices are made in opmaker’s “match param-
eters” procedure. Although this did not occur in our
tests, for more elaborate operators the choice of param-
eter matching is not always deterministic.

Finally, we have not as yet evaluated opmaker in the
face of “noisy data”, where the user makes a mistake in
the operator sequence. This could manifest itself in the
user leaving out an object which is in fact affected by
an operator, or leaving out an operator application from
the example sequence. Again, the revision of operators
given more example sequences may be effective to solve
the problem of noisy data.

Related work

There has been comparatively little work done in the ar-
eas of operator induction and theory revision of AI plan-
ning domains, particularly where that work has been
within an existing knowledge engineering environment.

Wang (Wang 1995) describes a system, OBSERVER,
of learning operators automatically and incrementally
by observation of expert solution traces and practice.
Inputs to this system are (a) the domain description
language (object types and predicates), (b) experts’

problem solving traces (i.e. action sequences) where
each action consists of the operator name, the pre-
state and the post-state (c) practice problems for (ini-
tial state and goal descriptions) to allow for learning-
by-doing operator refinement. Given these inputs the
system automatically acquires the preconditions and ef-
fects of the operators.

Another relevant work is Grant’s thesis (Grant 1996).
He shows how operators may be induced from the de-
scription language. In an object based description lan-
guage objects are represented by the different states in
which they can exist. For example in a Hiking Domain
the object tent can be “up” or “down” or “loaded” in
the car. To get from one state to another the object
has to go through a transition and the transition is ini-
tiated by an operator. Grant discusses how transitions
can be put together into a state transition network, for
example:

up(tent , place)→
down(tent , place)→
loaded(tent , car , place)

Grant shows that by considering the transition from one
complete state description to another a suitable opera-
tor may be deduced but where there are choices to be
made for the object state then a goal can be reached
ultimately from the most general state. In the tent ex-
ample the most general state would be when the tent is
down since, from that state it can be either loaded or
put up.

Both these works have obvious similarity with our
own, the main point of contrast being that opmaker is
situated within an existing acquisition and modelling
environment, and so benefits from the partial model
created using that environment, and the use of diverse
tools to check what it has induced. Further, opmaker
is aimed at inducing operators in hierarchical domain
models.

In contrast, Huffman, Pearson and Laird (Huffman,
Pearson, & Laird 1992) present an analysis of domain
theory problems which is based on the premise that
“Almost every domain theory is actually an approxi-
mation. This is due to the frame problem: the precon-
ditions and effects of actions are extremely difficult to
describe fully except in limited domains.” They identify
different types of domain theory imperfections when it
comes to dealing with operators as: overgeneral precon-
ditions; overspecific preconditions; incomplete postcon-
ditions; extraneous postconditions; and missing opera-
tors. These ideas are influencing our future work as we
progress with the theory revision stage. Having found
a means of inducing operators successfully, though not
necessarily accurately, we hope to use theory revision to
refine the new operators induced in our domain models.

Conclusion
In this paper we have described an implemented al-
gorithm opmaker for extracting operator schema from

examples containing the list of objects affected by the
operator. We argue that such a tool greatly allevi-
ates the task of operator encoding, and fits well into
an engineering environment for planning domain acqui-
sition and modelling. Such a tool appears necessary if
non-experts are to input domains for use with planning
engines. opmaker relies on the following cues to help
induce operators:

• a partial domain model of object sort and behaviour

• the completeness and coherence of the example se-
quences of operators

• high level user input, when necessary, in the form of
one “click” indicating a choice of substate class

The algorithm induces operators, using a high level,
partial model of the domain, as well as using the causal
structure of the example sequence to track the state of
an object.

Although our initial experiments were very encourag-
ing, we recognise that opmaker can generate operators
that contain bugs and the thrust of our future work
will be in further developing the validation procedures
and developing a theory revision system which can aid
the correction of the faulty theory and the building of
robust domain models. Alongside the future develop-
ment of GIPO to run hierarchical planners we intend to
further integrate the opmaker method to build suitable
hierarchical operators.

References

Grant, T. J. 1996. Inductive Learning of Knowledge-
Based Planning Operators. Ph.D. Dissertation, de Ri-
jksuniversiteit Limburg te Maastricht.
Hoffmann, J. 2000. A Heuristic for Domain Indepen-
dent Planning and its Use in an Enforced Hill-climbing
Algorithm. In Proceedings of the 14th Workshop on
Planning and Configuration - New Results in Plan-
ning, Scheduling and Design.
Huffman, S. B.; Pearson, D. J.; and Laird, J. E. 1992.
Correcting imperfect domain theories: A knowledge-
level analysis. In S. Chipman and A. Meyrowitz, edi-
tors, Kluwer Academic Press, 1992.
Liu, D., and McCluskey, T. L. 2000. The OCL Lan-
guage Manual, Version 1.2. Technical report, Depart-
ment of Computing and Mathematical Sciences, Uni-
versity of Huddersfield .
McCluskey, T. L., and Kitchin, D. E. 1998. A Tool-
Supported Approach to Engineering HTN Planning
Models. In Proceedings of 10th IEEE International
Conference on Tools with Artificial Intelligence.
McCluskey, T. L., and Porteous, J. M. 1997. En-
gineering and Compiling Planning Domain Models to
Promote Validity and Efficiency. Artificial Intelligence
95:1–65.
McCluskey, T. L., and West, M. M. 2001. The au-
tomated refinement of a requirements domain theory.

Journal of Automated Software Enginnering, Special
Issue on Inductive Programming 8(2):195 – 218.
McCluskey, T. L.; Jarvis, P.; and Kitchin, D. E. 1999.
OCLh : a sound and supportive planning domain mod-
elling language. Technical report, Department of Com-
puter Science, The University of Huddersfield.
McCluskey, T. L. 2000. Object Transition Sequences:
A New Form of Abstraction for HTN Planners. In
Proceedings of the 5th International Conference on Ar-
tificial Intelligence Planning and Scheduling Systems
(aips-2000) .
Simpson, R. M.; McCluskey, T. L.; Liu, D.; and
Kitchin, D. E. 2000. Knowledge Representation in
Planning: A PDDL to OCLh Translation. In Proceed-
ings of the 12th International Symposium on Method-
ologies for Intelligent Systems.
Simpson, R. M.; McCluskey, T. L.; Zhao, W.; Aylett,
R. S.; and Doniat, C. 2001. GIPO: An Integrated
Graphical Tool to support Knowledge Engineering in
AI Planning. In Proceedings of the 6th European Con-
ference on Planning.
Tate, A.; Polyak, S. T.; and Jarvis, P. 1998. TF
Method: An Initial Framework for Modelling and
Analysing Planning Domains. Technical report, Uni-
versity of Edinburgh.
Wang, X. 1995. Learning by Observation and Prac-
tice: An Incremental Approach for Planning Operator
Acquisition. In Proceedings of the 12th International
Conference on Machine Learning.

Appendix: Auto-generated PDDL
(define (domain hiking)
(:requirements :strips :equality :typing :conditional-effects)
(:predicates

(up ?x1 - tent ?x2 - place)
(down ?x1 - tent ?x2 - place)
(loaded ?x1 - tent ?x2 - car ?x3 - place)
(in ?x1 - person ?x2 - car ?x3 - place)
(fit ?x1 - person ?x2 - place)
(tired ?x1 - person ?x2 - place)
(at ?x1 - car ?x2 - place)
(partners ?x1 - couple ?x2 - person ?x3 - person)
(walked ?x1 - couple ?x2 - place)
(next ?x1 - place ?x2 - place))

(:action putdown
:parameters (?x1 - tent ?x2 - person ?x3 - place)
:precondition (and (fit ?x2 ?x3)(up ?x1 ?x3))
:effect (and (down ?x1 ?x3)(not (up ?x1 ?x3))))

(:action load
:parameters (?x1 - person ?x2 - tent ?x3 - car ?x4 - place)
:precondition (and (fit ?x1 ?x4)(at ?x3 ?x4)(down ?x2 ?x4))
:effect (and (loaded ?x2 ?x3 ?x4)(not (down ?x2 ?x4))))

(:action getin
:parameters (?x1 - person ?x2 - place ?x3 - car)
:precondition (and (at ?x3 ?x2)(fit ?x1 ?x2))
:effect (and (in ?x1 ?x3 ?x2)(not (fit ?x1 ?x2))))

(:action drive
:parameters (?x1 - person ?x2 - car ?x3 - place ?x4 - place)
:precondition (and (in ?x1 ?x2 ?x3)(at ?x2 ?x3))
:effect (and (in ?x1 ?x2 ?x4)(not (in ?x1 ?x2 ?x3))

(at ?x2 ?x4)(not (at ?x2 ?x3))
(forall (?x5 - person)
(when (in ?x5 ?x2 ?x3)(and (in ?x5 ?x2 ?x4)(not (in ?x5 ?x2 ?x3)))))

(forall (?x6 - tent)
(when (loaded ?x6 ?x2 ?x3)(and (loaded ?x6 ?x2 ?x4)(not (loaded ?x6 ?x2 ?x3)))))))

(:action getout
:parameters (?x1 - person ?x2 - place ?x3 - car)
:precondition (and (at ?x3 ?x2)(in ?x1 ?x3 ?x2))
:effect (and (fit ?x1 ?x2)(not (in ?x1 ?x3 ?x2))))

(:action unload
:parameters (?x1 - person ?x2 - tent ?x3 - car ?x4 - place)
:precondition (and (fit ?x1 ?x4)(at ?x3 ?x4)(loaded ?x2 ?x3 ?x4))
:effect (and (down ?x2 ?x4)(not (loaded ?x2 ?x3 ?x4))))

(:action putup
:parameters (?x1 - tent ?x2 - person ?x3 - place)
:precondition (and (fit ?x2 ?x3)(down ?x1 ?x3))
:effect (and (up ?x1 ?x3)(not (down ?x1 ?x3))))

(:action walktogether
:parameters (?x1 - person ?x2 - person ?x3 - couple ?x4 - place ?x5 - place)
:precondition (and (fit ?x1 ?x4)(fit ?x2 ?x4)(walked ?x3 ?x4)(partners ?x3 ?x1 ?x2))
:effect (and (tired ?x1 ?x5)(not (fit ?x1 ?x4))

(tired ?x2 ?x5)(not (fit ?x2 ?x4))
(walked ?x3 ?x5)(not (walked ?x3 ?x4))))

(:action sleepintent
:parameters (?x1 - person ?x2 - person ?x3 - tent ?x4 - place)
:precondition (and (up ?x3 ?x4)(tired ?x1 ?x4)(tired ?x2 ?x4))
:effect (and (fit ?x1 ?x4)(not (tired ?x1 ?x4))

(fit ?x2 ?x4)(not (tired ?x2 ?x4)))))

