
PDDL: A Languagewith a Purpose?

T. L. McCluskey
Departmentof ComputingandMathematicalScience,

Schoolof ComputingandEngineering,
Universityof Huddersfield,UK

email: lee@zeus.hud.ac.uk

Abstract

In orderto makeplanningtechnologymoreaccessibleandus-
abletheplanningcommunitymayhave to adoptstandardno-
tationsfor embodyingsymbolicmodelsof planningdomains.
In thispaperit is arguedthatbeforewedesignsuchlanguages
for planningwe must be able to evaluatetheir quality. In
otherwords,we mustclearfor what purposethe languages
areto beused,andby whatcriteriathelanguages’effective-
nessare to be judged. Heresomecriteria aresetdown for
languagesusedfor theoreticalandpracticalpurposesrespec-
tively. PDDL is evaluatedwith respectto them,with differ-
ing resultsdependingon whetherPDDL’s purposeis to bea
theoreticalor practicallanguage.From the resultsof these
evaluationssomeconclusionsaredrawn for thedevelopment
of standardlanguagesfor AI planning.

Intr oduction
Goodplanningalgorithmsarehardto devise,but fairly easy
to evaluate; on the other hand, modelling languagesare
fairly easyto devise, but hard to evaluate. Languageex-
tensionis similar: it is relatively easyto addarbitraryfea-
turesto a language,but addingthe tools to manipulatethe
enhancedlanguage,or perfectinga semanticdefinition of
theextension,is muchmoredifficult. Having deviseda lan-
guage1, how can we evaluateit’s quality? One way is to
usepracticalmethods.Experimentscanbesetup to testthe
effectivenessof a language,usingengineersin a controlled
environment.This is a time consumingandcostlybusiness,
however, andthe testsareproneto extraneousvariablesas
peopleact differently whenon their own to whenthey are
beingexperimentedon.

For reasonssuch as these,more analyticalmethodsof
evaluating languagesare popular. This involves generat-
ing a list of criteria,usuallycalleddesigncriteria, thathave
beendevisedwhenconsideringthepurposeof thelanguage.
Sometimesthesecriteria are well developeda priori, and
sometimesold languagesaresubjectto beingevaluatedwith
new criteria. A well-usedlanguagedoesnot necessarily
meanit will scorehighly on a desiredsetof criteria; it may
be that one featureof the languagemakes it uniquelyus-

1It is assumedin this paperthat the languagesconsideredare
for domainmodelsinput to aplanner, ratherthan‘plan’ languages
usedto representtheoutputof aplanner.

ableby a community. That featuremay be that it is sim-
ilar to a setof languagesit wasdesignedto replace,mak-
ing it easyto migrateto. Or asanotherexample,consider
the old languageFORTRAN IV. It was well respectedby
engineersof mathematicalapplicationsbecauseof its com-
pilers’ efficiency andits wealthof mathematicalprimitives.
But given it shouldembodydesirablesoftwareengineering
criteria suchasstrong typing andstructured programming
then it was quite obvious that it scoredpoorly. Thus lan-
guageslikeFORTRAN wereeitherre-invented(henceenvi-
ronmentssuchas’MatLab’) or they evolvedto scorehigher
againstthenew criteria(henceFORTRAN 77with its struc-
turedcontrolconstructs).

In this paperI discussthekindsof criteriaagainstwhich
an AI planninglanguagemight be judged,making a dis-
tinctionbetweenthemdependingon thepurposeof thelan-
guage.I applythemto version1.2of PDDL,anddraw some
conclusionsfor thefuturedevelopmentof planninglanguage
standards.

Criteria for Evaluating Languages
Thestudyof languagesfor machineaswell ashumancon-
sumption(ie onesthatpeoplehave to manipulateor under-
standin someway) encompassesthreeaspects:syntax,se-
manticsand pragmatics.A fundamentalquestionabouta
languageariseswhenconsideringthesethreeaspects:is it
goingto beusedtheoreticallyor is it goingto beusedgener-
ally bypeopleto encodecomplex algorithmsor knowledge?

Theoretical formal languages: Consideringtheoretical
languages,in computersciencewehavetheLambdaCalcu-
lus, the Pi-Calculus,the Turing Machine,first order logics
etc. They are often usedto theoriseaboutconcepts(e.g.
sequentialor concurrentcomputation),or are usedas the
meaningdomainfor the semanticaldefinition of practical
languages.Consideringthe well-known languageswhich
areusedin theoreticalresearch,theintrinsiccriteriathatun-
derlietheir successappearto bethefollowing:
� (1) simple, clear, precisesyntaxand well-researchedse-

mantics
For example,in LambdaCalculusthesyntaxis definedin
a few BNF rules,with syntacticsugarbeingaddedwhen
needed.The semanticshave beenstudiedin depth: for
example,recursive functionsin LambdaCalculushave a

1



clearandpreciseoperationalsemantics(usingconversion
rules� andnormalorderreduction)andfixedpoint seman-
tics. Researchhasshowedthatthesetwo kindsof seman-
ticsco-inside.

� (2) adequateexpressiveness
Canthelanguageadequatelyrepresenttherangeof its tar-
getedapplicationdomains? For LambdaCalculusthis
is the domainof computablefunctions,and it is a well
known (thoughunproven) conjecturethat it is adequate
for this.

� (3) clearmechanismsfor reasoning
Cana user(perhapswith tool support)reasonwith parts
of a formula in the language?In LambdaCalculusone
usestheconversionrulesto transformoneexpressioninto
another, equivalentexpression.

Applied formal languages:Theoreticallanguages,how-
ever, tend to have little or no pragmaticfeatures. At the
other extreme are formal languageswhich have complex
syntaxwhich supportmany usefulpragmaticfeatures.For
examplewehaveJava in thefield of programming,Z in for-
mal specificationof software,RML in requirementsmod-
elling (Greenspan,Mylopoulos,& Borgida1994)or

�������
	

in knowledge-basedsystems(van Harmelenet al. 1996).
Often,pragmaticfeaturesarepresentat theexpenseof clar-
ity. For example,theamountof extrasyntacticbaggageem-
ployedby JAVA tendsmakeit muchlessclearthattheolder,
simplerPASCAL programminglanguage. In AI planning
thereare a spectrumof languagesbetweenthesetwo ex-
tremes.Someplanningsystemsrequirecomplex practical-
orientedfeaturesin their input languages,suchashierarchi-
cally structuredobjectsandoperators(McCluskey 2000),or
ConditionTypes(Tate,Drabble,& Levine 1994);somere-
searchersneedto useaninputlanguagethatminimally mod-
els the dynamicsof the domain,for examplewhenexplor-
ing the theoreticalcomplexity of planning(e.g. (Bylander
1991)).

I now considersomecriteriathathave beenfounduseful
for evaluatingthepragmaticaspectsof formal languages.A
quitegeneralframework for theevaluationof languagesand
theirenvironmentsis Green’sCognitiveDimensions(Green
2000). This involvesusinga setof criteria as ’discussion
points’ to focus on the variousdimensionsof a language,
andmayresultin an informal evaluation(Greenadmitshis
methodin not analytic, and the dimensionsarenot mutu-
ally independent).He devisedfourteencriteriawhich have
beenusedto evaluatevarioustypesof languageandenvi-
ronments,including theoremproving assistants,UML and
programminglanguages.Althoughthesecriteriahave been
quitewidely used,they have beensuccessfulfor languages
which are embeddedin an environmentratherthan a lan-
guageitself. Someof thesecriteriaareaimedat thevisual
aspectsof environmentsin which the languageis embed-
ded.Thusthey wouldbebetterappliedto aplanningknowl-
edgeacquisitionenvironmentthanthelanguageusedto rep-
resentthe knowledgeonly. However, I have extractedand
enhancedthreecriteriawhich areparticularlyrelatedto the
languageitself, andhave beenusedelsewherein the litera-
ture:

� (4) maintenance(alsoreferredto ashiddendependencies
or locality of change)
After changingonepartof thenotation,will thishaveany
invisible knock-oneffectson otherparts?Do changesto
apartof amodeljusthavea localeffect,or will they have
globalconnotations?Canthemodelbeeasilyandconsis-
tently updatedto reflectchanges?(from theviewpointof
maintenance,it is desirablethatall changeshaveminimal
globaleffects).

� (5) closenessof mapping/ customisation
How naturalis themappingbetweenthedomainandthe
model?how small is the‘semanticgap’? Is thelanguage
customisablein somesensesothat it canfit in well with
applications?

Sincethereisawholerangeof assumptionsinvolvedin plan-
ning which mayor maynot hold in an application(for ex-
ampleto dowith actionduration,resources,closedworld) it
maybethat themodellinglanguagewill have “variants”to
dealwith differentassumptions.Relatedto this is theneed
to have ’hooks’ in the languageto allow extension: if the
scopeor depthof requirementsof thedomainareincreased,
cantheformalismbelikewiseextended?
� (6) error-proneness:

doesthedesignof the languagediscourageerrors,or are
thereany partswhereit is hard to avoid errors? Is the
constructionof domainmodelserrorpronein a particular
way?

Criteria (4) - (6) are analogousto those used to evalu-
ateprogramminglanguages:(4) reflectsthe idea that lan-
guagesshould embodystructuresto promote loose cou-
pling betweensub-parts,and strongcoherence.The ‘ob-
ject’ in object-orientedprogrammingscoreshighly in this
respect,as implementationsof object behaviour are insu-
latedfrom otherpartsvia theobjectinterface.(5) reflectsthe
dominanceof ‘high-level’ languages- thosethat aremore
problem-orientedthanmachineoriented,andareequipped
with user-definedstructuresfor customisation.Finally, (3)
has influencedprogramminglanguagedesignin order to
eliminatecommonerrors;for example,languageswhichare
not stronglytypedareparticularlyproneto errorsresulting
from variablemisuseandmisspelling.

To investigatemorecriteriawe useVanHarmelenet al’s
evaluationof

�������
	
, a formalKBS specificationlanguage,

andhencerelevant to AI planninglanguages.They usesix
criteria to evaluatethis formal languageusedfor formalis-
ing KADS expertisemodels(van Harmelenet al. 1996).
Althoughobjectivenessmaybecompromisedwhenagroup
setsout their own criteria for evaluatingtheir own product,
the criteria they useareclearly worked out in responseto
consideringthe purposeof the language.They usecriteria
similar to thoseabove(in particular(1), (4) and(6)), aswell
asthefollowing:
� (7) reusability

Canmodelsor partsof modelsbe easily reusedto con-
structmodelsfor new domains?

� (8) guidelinesandtool support

2



Is thereausefulmethodto follow to build upamodel,and
are theretoolsto supportthisprocess?

With respectto the last point, in all areasin computersci-
ence involving somekind of non-trivial knowledge cap-
ture, methodshave beendevelopedto support this. For
examplein formal specificationof softwarethereis the B
method(Schneider2001),or in theacquisitionof knowledge
for KBS thereis theKADS method(Wielinga,Schrieber, &
Breuker1992),andsomemethodshavealsobeendeveloped
for acquiringAI planningknowledge(Tate,Polyak,& Jarvis
1998;McCluskey & Porteous1997). Themethodwill give
a setof orderedstepsto be carriedout in order to capture
anddebug the domainmodel, thusguiding the knowledge
engineerthroughoutthe process.Ideally, the tools will be
availablein anintegratedenvironment,andwill supportthe
stepsin the method. Using the structureof the modellan-
guage,thetoolsshouldbeableto providepowerful support
for staticallyvalidating,analysingandoperationalisingthe
model.

Finally, I draw ontheguidelinesfor thedesignof domain
modellanguagesasrecordedin theKnowledgeEngineering
for AI PlanningRoadmap(McCluskey et al. 2003). This
was written in the context of planningdomainmodelling,
with thepurposeof thelanguagebeingto assisttheprocess
of knowledgeacquisitionanddomainmodelvalidation.The
criteriaincludedseveralsimilar to thosediscussedabove(in
particular(1), (2), (5), (8)), andadditionallythefollowing:
� (9) structure

It shouldprovidemechanismsthatallow complex actions,
complex statesandcomplex objectsto be broken down
into manageableandmaintainableunits.For example,the
dynamicstateof a planningapplicationcouldbe broken
down into thedynamicstateassociatedwith eachobject.
On this structurecanthenbehungwaysof checkingthe
modelfor internalconsistency andcompleteness.

� (10)supportfor operationalaspects
The language’s framework shouldincludea setof prop-
erties and metrics which can be evaluatedto assessa
model’s operationalityandlikely efficiency. It shouldbe
possibleto predictwhetherthemodelcanbetranslatedto
anefficient application,andwhatkind of plannershould
beusedwith themodel.

To sum up, the criteria for practical formal languages
arebasedaroundtheideathat thestructureof the language
shouldsupportinitial modelacquisitionanddebugging,and
subsequentmodelmaintenanceandre-use.Also, although
criteria (1) - (3) areaimedspecificallyfor theoreticallan-
guagesthey are often thoughtdesirablefor practical lan-
guagesalso.

DesignCriteria for a Planning Language
Whatarethedesigncriteriafor anAI planninglanguage?As
mentionedabove, it dependsfor whatpurposethelanguage
is set,andaparticularconcernis whetherthelanguageis for
theoreticalor practicaluse. In thecaseof PDDL, this ’pur-
pose’seemsto have grown andchangedasthe languageis
usedmorewidely. From the initial PDDL report(AIPS-98

PlanningCompetitionCommittee1998),it appearsthat the
languagewasdesignedto representthe syntaxandseman-
tics of domainmodelsthat werecurrentlyavailableto the
authors,andthat wereusedasinput languagesto many of
the publishedplannersof the time. Not all plannerswere
expectedto useall PDDL’s features,andon theotherhand
plannerswere expectedto have requirementsthat would
meana userextendingPDDL in a controlledway. Its initial
purpose,therefore,appearsto have beenasa communica-
tion language- a basiccommondenominatorfor planners
of the STRIPS-traditionat the time so that (a) they could
be comparedin competitionand(b) problemsetscould be
sharedandplanningalgorithmsindependentlyvalidated.In
thisrespect,asacommunicationlanguageit hasclearlybeen
successful.

Nowadaysthe PlanningDomainDefinition Language is
sometimesdescribedasa ’modelling language’,which has
quite different ramificationsthan its originally expressed
purpose.If its purposeis to supporttheoreticalstudy, eg to
help comparethe capabilitiesof new planningalgorithms,
then it shouldbe evaluatedwith respectto a restrictedset
of criteria suchas (1) - (3). If its purpose(now) is to be
a practicallanguage,to helpanengineeraccuratelyandef-
ficiently encodean applicationdomaininto a planningdo-
mainmodelthenadditionallyit shouldbesubjectto evalua-
tion by a rangeof thecriteriasuchas(3) - (10).

Evaluation of PDDL with respectto stated
criteria

In PDDL we have a family of languagesto suit planners
with differentcapabilities.Thebasicrequirementin PDDL
is ‘:strips’ which indicatesthe underlyingsemanticsof the
languageworldsareconsideredassetsof situations(states),
whereeachstateis specifiedby statingalist of all predicates
that aretrue. Firstly, I evaluatethe languageusingcriteria
(1) - (3) givenabove. I concentratehereon version1.2 of
thelanguage,andremarkon theextensionslater.
Clear syntaxand semantics: Thesyntaxis clearandpre-
ciselydefinedwithin themanual,andparsingtoolsthatem-
body this definition are publically available. The seman-
ticsof PDDL version1.2,however, areinformal andappear
to be distributedamongthe manualitself, the pre-existing
languages/systemsthatPDDL replaced(eg ucpop),PDDL’s
languageprocessors,andtheLISP interpreter. Althoughthe
fact that PDDL’s syntaxis LISP-like appearsa superficial
observation, the meaningof several of the primitive func-
tions is givenin termsof LISP functions.For example,the
manualoften relies on the readerusing his intuition (p9:
‘Hopefully, thesemanticsof theseexpressionsis obvious’).
As the languagebecomesmore complex, then the natural
languagesemanticsarelessobvious(for example,consider
the meaningof domainaxiomsandtheir relationshipwith
action definitionson page13 of the manual). Theseex-
tensionsneedto bedefinedprecisely, asif two systemsuse
theseextensions,thenthey oughtto dosoin a uniformway,
otherwisethestandardis notpreserved.

3



Adequateexpressiveness: ThatPDDL a very expressive
language� for a range of planning applicationshas been
shown by the rangeof problemdomainsusedin competi-
tions andin benchmarksets.Further, theability to change
someof the environmentalassumptionsis alsopresent,al-
though the semanticsof someof theseextensionsis not
clear.

Clear mechanismsfor reasoning: A domaindefinitionin
PDDL is a‘model’ in thesensethatwehavearepresentation
thatcanbeusedto performoperationsin thesamemanner
thatoccurin thedomain;andthatthereis a well-known op-
erationalsemanticsfor constructsin themodel.Thedeclara-
tive featuresof thenotation- pre-andpost-conditions,logic
expressions,andnamedobjectswithin themodelwhichcor-
responddirectly to namedobjectsin thedomain,make rea-
soningaboutthenotationfeasible.However, problemsto do
with semantics,particularlytodowith its extensions,restrict
thesuccessof this languagewith respectto thecriterion.

Summary
In termsof the criteria for a languageusedfor theoretical
purposes,PDDL scoreswell on someaspects.Thereare
problemswith thelackof aclearsemanticsbut thesetendto
bemoreto do with the non-basicpartssuchasthedomain
axioms.Also, thetemporalandresourceextensionsof ver-
sion 2.1 seemto have addressedthe semanticissuesmore
thoroughly(Fox & D.Long2001).

PDDL: a modelling language?
HereI briefly evaluatePDDL using(3) - (10), the criteria
reservedfor languagesaimedatpracticalapplication.

structur e and error-proneness: PDDL hasfeaturessuch
as ‘:timeless’ - which allow the statementof staticknowl-
edge,and‘:domain-axioms’which allow left-to-right rules
that form invariantson situations. A domaindefinition is
structuredinto componentsby Keywordse.g.:constants:ac-
tionsetc. A specialkeyword is :requirementswhich tells a
processwhich blendof PDDL featuresareusedin the do-
main definition. Further, the manualdevotesseveralpages
to a hierarchicalactionnotation;unfortunately, perhapsre-
latedto the fact that it wasnot subsequentlyused,version
2.1 of PDDL excludesthis. On the negative side,whereas
PDDL (v1.2) hasfeaturesfor hierarchicallystructuringac-
tions,it doesnothavesufficientfeaturesfor giving structure
to objectsor states.Further, the languagelacksstructures
for settingup internalconsistency criteriasuchasthecom-
pletenessor validity of world statesor actions.

maintenanceand re-usability: PDDL’s declarative form
makesaddingandchangingoperatorsa local task,andre-
using operatorsin new domainsfeasible. The ‘:extends’
featureallows a form of modularisation- one can import
previouslywrittencomponentsinto a new model.However,
no help is given in dealingwith the naturaldependency of
actionson eachother: the requirementthat pre-conditions
shouldbe achievableby the executionof other actionsor
theinitial statecausesglobalinterferenceandis thecauseof
many errorswhendefiningdomains.

guidelinesand tool support: thereareparsers,solution
checkersanddomainanalysistoolsavailablepublically, but
PDDL was not designedto be associatedwith a method
for modelbuilding. This onepoint aloneseemsto make it
currentlyineffectiveasa practical‘modelling language’for
complex applications.

closenessof mapping / customisation: ClearlyPDDL’s
encodingssharesthesame‘high level’ aspectsasdo propo-
sitional encodingsin general. Also, onecanposedomain
axiomsto model invariantsin the domain. Reflectingdo-
mainstructure (asmentionedabove) by for examplecreat-
ing compositeobjectsis not possible. Customisationdoes
appearto be addressedin PDDL with featuressuch as
‘:requirements’wherefundamentalassumptionsaboutthe
modelof thedomaincanbeset.

support for operational aspects: The PDDL manual
makes it clear that this area is not one that fits in with
PDDL’s aim - to model the physicsof a domain. It does
recommenda conventionby which suchextensionscanbe
madein a controlledway, suchthat themodelwith theex-
tensionsstrippedaway will make senseto a purePDDL in-
terpreter.

Summary

For a languagewhoseinitial purposewas one of domain
model communication,and which aspiredto include only
featurewhich capturedynamics,PDDL hasin fact several
featuresto help domainbuilders. TheseincludeHTN op-
erators,domain axioms, modularisationthrough the ‘ex-
tends’ keyword etc. On the other hand, it fails to meet
the criteria is in not being associatedwith a modelbuild-
ing method,and in its lack of structurefor objects,pred-
icatesand states. Structuringdevices are presentin sev-
eralmodellinglanguages(e.g.DDL.1 (Cesta& Oddi 1996;
McCluskey & Porteous1997)); theseallow the state-space
of objectsto bemodelledindependentlyof theactions,and
henceareusefulin removing errorsfrom actionrepresenta-
tions.

Conclusions

Both to help the Planningfield mature,and to help engi-
neersapply the technology, languageconventionshave to
beachieved. Therequirementsof the futureSemanticWeb
in particular will demanda commonmodel for planning
knowledge. This paperhasarguedthat beforeconventions
aredevisedtheremustfirst beanagreementon thepurpose
of a language,andsecondlya setof criteria to be usedto
helpform anddevelopthelanguage.

Two broadpurposesfor anAI planningdomainlanguage
wereoutlined- oneasa theoreticaldevice, to be usedfor
exploringthepropertiesof planningalgorithms,andoneasa
practicallanguage,to beusedto helpanengineerefficiently
andaccuratelyencodeanapplicationdomain.

I performedaninitial evaluationof PDDL with respectto
thecriteria formedfrom bothpurposes,with mixedresults.
Theevaluationleadsmeto thefollowing conclusions:

4



– in standardisinga form of PDDL for theoreticalpur-
poses,moreattentionneedsto bedevotedto precisely
definingits semantics,andthatof any of its extensions;

– in standardisinga form of PDDL for practicaldomain
model building, then more structure,guidelinesand
tool supportis required.

For thefuture,I feel thatthecommunityneedsto settleon
thepurposeof PDDL,decideonthecriteriathatcanbeused
to evaluatePDDL’s quality, andperforma thoroughevalua-
tion usingthelanguage’smostrecentversion.Thiswill lead,
I believe,to asoundpathfor its futuredevelopment.

References
AIPS-98PlanningCompetitionCommittee.1998. PDDL
- The PlanningDomain Definition Language. Technical
ReportCVC TR-98-003/DCSTR-1165, Yale Centerfor
ComputationalVisionandControl.

Bylander, T. 1991. Complexity Resultsfor Planning. In
Proc. IJCAI’91.

Cesta,A., andOddi,A. 1996.DDL.1: A FormalDescrip-
tion of a ConstraintRepresentationLanguagefor Physical
Domains.In Ghallab,M., andMilani, A., eds.,New Direc-
tionsin AI Planning. IOSPress.341–352.

Fox, M., and D.Long. 2001. PDDL2.1: An extension
to PDDL for expressingtemporalplanningdomains. In
TechnicalReport,Deptof ComputerScience, Universityof
Durham.

Green,T. 2000. Instructionsanddescriptions:somecog-
nitive aspectsof programmingand similar activities. In
AdvancedVisual Interfaces, 21–28.

Greenspan,S.; Mylopoulos, J.; and Borgida, A. 1994.
On formal requirementsmodelinglanguages:RML revis-
ited. In Proceedingsof the16th InternationalConference
onSoftware Engineering, 135– 148. IEEEComputerSci-
encePress.

McCluskey, T. L., andPorteous,J. M. 1997. Engineer-
ing andCompiling PlanningDomainModels to Promote
Validity andEfficiency. Artificial Intelligence95:1–65.

McCluskey, T. L.; Aler, R.; Borrajo,D.; Haslum,P.; Jarvis,
P.; I.Refanidis;andScholz,U. 2003.KnowledgeEngineer-
ing for PlanningRoadmap.http://scom.hud.ac.uk/planet/.

McCluskey, T. L. 2000. ObjectTransitionSequences:A
New Form of Abstractionfor HTN Planners.In TheFifth
International Conferenceon Artificial IntelligencePlan-
ningSystems.

Schneider, S. 2001. TheB-Method:An Introduction. Pal-
grave.

Tate,A.; Drabble,B.; andLevine, J. 1994. The Useof
ConditionTypesto RestrictSearchin an AI Planner. In
Proceedingsof theTwelfthNationalConferenceon Artifi-
cial Intelligence.

Tate,A.; Polyak,S.T.; andJarvis,P. 1998.TF Method:An
Initial Framework for Modelling andAnalysingPlanning
Domains.Technicalreport,Universityof Edinburgh.

vanHarmelen,F.; Aben,M.; Ruiz,F.; andvandePlassche,
J. 1996. Evaluatinga formal KBS specificationlanguage.
IEEEExpert11(1):56–62.
Wielinga, B. J.; Schrieber, A. T.; and Breuker, J. 1992.
KADS - a modellingapproachto knowledgeengineering.
KnowledgeAcquisition4(1):5– 53.

5


