submitted, aips-00

OCLGraph : Exploiting Object Structure in a Plan Graph Algorithm

R. M. Simpson and T. L. McCluskey
Department of Computing Science
University of Huddersfield, UK
r.m.simpson@hud.ac.uk
t.L.mccluskey@hud.ac.uk

Abstract

In this paper we describe the results of integrat-
ing two strands of planning research - that of us-
ing plan graphs to speed up planning, and that of
using object representations to better represent
planning domain models. To this end we have de-
signed and implemented OCL-graph, a plan gen-
erator which builds and searches an object-centred
plan graph, extended to deal with conditional ef-
fects. Our initial design and experimental results
appear to confirm our conjectures that the extra
information and structure of OCL benefits plan
generation efficiency and algorithmic clarity.

Introduction

This paper describes work that is part of a continu-
ing effort to evaluate the impact of modelling planning
domains in an object-centred way, using a family of
planning-oriented domain modelling languages known
as OCL (McCluskey & Porteous 1997). The benefit is
seen as twofold: (a) to improve the planning knowledge
acquisition and validation process (b) to improve and
clarify the plan generation process in planning systems.
With regard to (b), it is our belief that certain obstacles
and problems that researchers into planning algorithms
encounter can be alleviated or overcome using a rich,
planning-oriented knowledge representation language.
The object-centred language OCL, and more recently
the hierarchical version OCL; (Liu 1999; McCluskey
& Kitchin 1998), have their roots in the ‘sort abstrac-
tion’ ideas used in the domain pre-processing work of
(Porteous 1993). OCL is primarily aimed as a high
level language for planning domain modelling, the main
feature distinguishing it from STRIPS-languages being
that models are structured in terms of objects, rather
than literals. It aims to allow modellers to more easily
capture and reason about planner domain encodings in-
dependent of planning architecture, and to help in the
validation and maintenance of domain models. On the
other hand, OCL retains all the flexibility of a STRIPS-
like encoding. The rationale behind OCL has been
sustained by the experience of those applying planning
technology. For example, the developers of the planner
aboard Deep Space 1 (N. Muscettola & Williams 1998)

stress the need to develop clean, planner-independent
languages that can be used to build and statically vali-
date domain models.

In this paper we seek to tie up the advantages in
creating a domain model in OCL with the use of a
particularly successful form of plan generation using a
plan graph algorithm called Graphplan (Blum & Furst
1997). The plan graph has been used as the basis for
many experimental planning systems, and was the the
basis of most of the planners in the AIPS-98 plan-
ning competition. This paper describes our investi-
gation into the use of an object-centred plan graph in
a Graphplan-like planning algorithm. Parallel work
(Kitchin & McCluskey 1996; Kitchin forthcoming1999)
is investigating the use of OCL in traditional goal di-
rected plan-space search algorithms. The current effort
is therefore part of a larger project to implement many
of the best regarded planning algorithms in a manner
both to process planning problems expressed in OCL
and to develop the algorithms in a manner to take ad-
vantage where possible of the additional information
content of OCL models.

After introducing the reader to OCL and Graphplan,
we detail the design and implementation of a planner
which draws from Graphplan in algorithmic details,
and from OCL for its representation. We argue that
the ‘object-graph’ algorithm embedded in OCL-graph
is conceptually simpler than the corresponding literal-
based algorithm. Also we have extended the algorithm
to deal with conditional effects using a strategy that
is similar to the factored expansion described by (An-
derson, Smith, & Weld 1998). In our empirical exper-
iments, however, we have restricted the OCL language
to fit in with the planner input language in Blum and
Furst’s algorithm (Blum & Furst 1997).

Our results suggest that the use of OCL (i) simpli-
fies the plan graph: proposition levels become object
levels where it is implicit that an object can only be in
one ‘substate’ at one time (ii) simplifies the detection of
‘mutex’ relations and (iii) provides a surprisingly natu-
ral way of dealing with conditional effects. Finally, our
initial implementation using tests from benchmark do-
mains suggest a potential speed up of up to 100 times in
plan generation when comparing Graphplan with and

submitted, aips-00

without an OCL encoding.

Foundations of OCL
Overview

In OCL the world is populated with objects each of
which exists in one of a well defined set of states (called
‘substates’), where these substates are characterised by
predicates. On this view an operator may, if the objects
in the problem domain are in some minimal set of sub-
states, bring about changes to the objects in the prob-
lem domain. The application of an operator will result
in some of the objects in the domain moving from one
substate to another. In addition to describing the oper-
ators in the problem domain OCL provides information
on the objects, their object class hierarchy and the per-
missible states that the objects may be in. The main
advantage of the OCL conception of planning problems
to algorithms is that they do not need to treat proposi-
tions as fully independent entities rather they now be-
long to collections that can be manipulated as a whole.
So instead of dealing with propositions the algorithms
deal with objects (typically fewer objects than propo-
sitions). This is a type of abstraction which we be-
lieve most naturally co-insides with domain structure.
It provides opportunities to improve on existing plan-
ning algorithms by adapting them to operate at the
object level rather than the propositional level.

Basic Formulation

A domain modeller using OCL aims to construct a
model of the domain in terms of objects, a sort hier-
archy, predicate definitions, substate class definitions,
invariants, and operators. Predicates and objects are
classed as dynamic or static as appropriate - dynamic
predicates are those which may have a changing truth
value throughout the course of plan execution, and dy-
namic objects (grouped into dynamic sorts) are each
associated with a changeable state. Each object be-
longs to a unique primitive sort s, where members of
s all behave the same under operator application. In
what follows we will explain those parts of OCL suffi-
cient for the rest of the paper, the interested reader is
referred to the bibliography for more information.

A ‘situated object’ in a planning world is specified by
a triple (4, s, ss), where i is the object’s identifier, s is
the objects primitive sort and ss is its substate - a set
of ground dynamic predicates which all refer to i. All
predicates in ss are asserted to be true under a locally
closed world assumption.

As a running example we will use a version of the
Briefcase World, as this is simple and has been used
in (Anderson, Smith, & Weld 1998) as the basis of
their discussion on the implementation of conditional
effects in ‘Graph Plan’. Note that, however, this does
not illustrate the full benefits of an OCL encoding as
the briefcase world is structurally simple. Dynamic ob-
jects in a briefcase world could be of sort bag (iden-
tifiers briefcase,suitcase,..) or of sort thing (identifiers
cheque,dictionary,suit,..), and static objects may be of

2

sort location (identifiers home,office ..). Two examples

of situated objects are

(cheque, [at_thing(cheque,home) ,
inside(cheque,briefcase),
fits_in(cheque,briefcase)])

(briefcase, [at_bag(briefcase,home)}).

A world state is a complete set of situated objects
for all the dynamic objects in the planning application,
and is usefully viewed as a total mapping between ob-
ject identifiers and their corresponding substates, as an
identifier is allowed to be associated with exactly one
substate. States are constrained by invariants. These
define the truth value of static predicates and the re-
lationships between dynamic predicates. In particular
they are used to record inconsistency constraints. A
world state that satisfies the invariants is called well-
formed.

For each sort s, the domain modeller groups a sort’s
substates together, specifying each group with a set of
predicates called a substate class definition. They
form a complete, disjoint covering of the space of sub-
states for objects of s. When fully ground, a substate
class definition forms a legal substate. To ensure that
any legal ground instantiation of a substate class defi-
nition gives a legal substate, definitions usually contain
static predicates. The substate class definitions for the
dynamic sorts thing and bag in the briefcase world are:

substate_classes (thing,
[at_thing(Thing,Location) ,inside(Thing,Bag),
fits_in(Thing,Bag)],
[at_thing(Thing,Location) ,outside(Thing)])
substate_classes(bag,
[at_bag(Bag,Location)])

meaning that a thing can only be either at a location
and in a bag that it fits into or that it is at a location
but is not in any bag, and a bag must be positioned at
a location. If ¢ is a variable or an object identifier of
sort s, and se is a set of predicates, then (i, se) is called
an object expression if there is a legal substitution
t such that iy = j and se; C ss, for at least one situ-
ated object (4, ss). The second component of an object
expression is thus called a substate expression. A plan-
ning task is defined by a well-formed world state, and
a goal consisting of any legal mapping of object identi-
fiers to substate expressions i.e. a goal is a set of object
expressions with distinct objects identifiers.

Operator Representation

An object transition is an expression of the form
(i, se = ssc) where 1 is a dynamic object identifier or a
variable of sort s, se is a substate expression describing
i, and ssc is an expression describing i that if legally
instantiated in any way would form a substate of i.
An action in a domain is represented by operator
schema O with the following components: O.id, an op-
erator’s identifier; O.prev, the prevail condition consist-
ing of a set of object expressions; O.nec, the set of nec-
essary object transitions; and O.cond, the set of (con-
ditional) object transitions. Each expression in O.prev

submitted, aips-00

must be true before execution of O, and will remain
true throughout operator execution. In the briefcase
world we have operators put_in, take_out and move.
The put_in operator will have a prevail section which
allows us to specify that the bag is at a location L but
this does not change as a result of applying the opera-
tor. The necessary section specifies that the thing must
be at the same location as the bag and must be outside
all containers prior to the application of the operator
but as a result of applying the operator the thing will
now be inside the bag but still at the same location.
The operator can be specified as follows:

operator (put_in(T,B),
% prevail
[se(bag,B, [at_bag(B,L)]1)],
% necessary
[ssc(thing,T, [at_thing(T,L) ,outside(T)] =>
[at_thing(T,L),inside(T,B) ,fits_in(T,B)]1)],
% conditional

[D

We define O.Pre to be the preconditions of O, i.e. the
set of object expressions in O.prev and the set of left
hand sides of O.nec. Hence put_in.Pre is [at_bag(B,L),
at_thing(T,L), outside(T)]. If O is ground we can define
O.Rhs to be the set of substates in the right hand sides
of O.nec.

The definition of the move operator illustrates the
specification of a conditional effect. In the example the
conditional clause asserts that if the thing is at the same
location as the bag (A) and is inside the bag then the
thing changes state to being at location (B) the new
location of the bag and is inside the bag. Where there
is more than one clause in a conditional section they
form a disjunction. The move operator is defined as
follows:

operator(move(X,A,B),
% prevail

0,

% necessary

[ssc(bag,X, [at_bag(X,A) ,ne(A,B)]

=>

[at_bag(X,B)]1) 1,

% conditional

[ssc(thing,T, [at_thing(T,A), inside(T,X),
fits_in(T,X)]

=>

[at_thing(T,B), inside(T,X), fits_in(T,X)]1)]
).

We define O.cond.lhs to be the set of substate ex-
pressions forming the left hand side of the conditional
clauses. Similarly we define O.cond.rhs to be the set of
sub states defined in the right hand side of the condi-
tional clauses.

The Graphplan System

Graphplan (Blum & Furst 1997) has proved to be one
of the fastest plan generation algorithms working with a
traditional STRIPS-like planning representation. Since
its introduction a number of authors have proposed
amendments with a view to improving the efficiency
of the algorithm further e.g. (Kambhampati, Parker, &

3

Lambrecht 1997). Here we give only a very brief review
of the algorithm, given the amount of published liter-
ature already using it. Graphplan works by building
a plan-graph representing all possible plans creatable
from the initial state by application of the available op-
erators. If we consider the set of propositions true in
the initial state as being at level 1 in our plan-graph
then at level 2 will exist the set of all operations that
are applicable, i.e. have their preconditions fulfilled by
the propositions of level 1. At level 3 will be the set of
propositions made true by the application of the opera-
tors of level 2. This process continues by developing the
graph in exactly the same manner to additional levels.
In the developing graph we record the application of
operators as links that connect the propositions of the
adjacent odd numbered levels. This process of moving
from one level of propositions to the next supported by
the application of operators is augmented by the ap-
plication to every proposition at level n with a special
operator no-op that renders the proposition true at level
n + 2. This forward development of the graph faces a
problem in that clearly in all proposition levels other
than level 1 there may be propositions that cannot be
jointly true. In the briefcase world the bag ‘briefcase’
cannot be at home and at the office. Likewise in a link
layer actions may be mutually exclusive. The actions of
moving the briefcase home and the action of moving it
to the office cannot be simultaneously undertaken. We
think of each proposition level as recording what poten-
tially might be true at the same instant. We think of
each link layer as recording the operations that might
consistently be applied in parallel or where no commit-
ment to ordering is required. The inconsistencies within
a layer are recorded within Graphplan by augmenting
the graph further by noting these mutually exclusive re-
lations both between operations in the link layers and
by recording mutually exclusive relations at the propo-
sition layers. The development of the graph in this way
from one proposition layer to the next mediated by a
link layer constitutes the forwards phase of Graphplan.

To complete Graphplan a backwards search phase is
required to find if a legal plan that satisfies the goal
condition has been generated. This backwards phase
is undertaken after the generation of each proposition
layer, and starts by first searching the new proposition
layer to see if all the propositions of the goal state are
supported at this level. If they are not then the back-
ward phase can be terminated and the next forwards
phase started. If the goals are all present then the goal
propositions must be checked to ensure that there are
no recorded mutual exclusions between any of them.
The backwards phase continues finding a set of oper-
ations that support these propositions and are them-
selves mutually consistent then recursively checking the
preconditions of those operations in the same manner
at the level two below. This process continues until we
have regressed to the propositions of level 1 which by
definition must be consistent with one another. If at
any layer we find that the chosen set of operators are

submitted, aips-00

not mutually consistent then we must backtrack and
see if an alternative set of operations can be chosen
to support the same set of propositions. In this way
Graphplan will continue interleaving its forwards and
backwards phases to find an optimally parallel short
legal plan, if one exists.

Conditional Effects in Graphplan

Since the original description of Graphplan a number of
authors have described algorithms to extend Graphplan
to allow the processing of conditional effects (Anderson,
Smith, & Weld 1998). In their paper Anderson Smith
and Weld argue that the relatively simple approach of
expanding the conditional effects section into all com-
binations of possible groundings is not feasible in cases
dealing with significant numbers of possible groundings.
They propose instead what they call a ‘factored expan-
sion approach’. Their approach requires that a operator
with conditional effects be composed of clauses, one for
the non-conditional component of the STRIPS opera-
tor and one for each grounding of the conditional clause
conjoined with the non conditional element. The result-
ing move — briefcase operator with the cheque and the
dictionary is as follows:

move-briefcase (7loc ?new)
:effect
(wvhen (and (at briefcase 7loc) (location 7new)
(not (= ?loc 7new)))
(and (at briefcase ?7new)
(not (at briefcase 7loc))))
(when (and (at briefcase ?loc) (location ?new)
(not (= ?loc 7new))
(in cheque briefcase))
(and (at cheque 7new)
(not (at cheque 7loc))))
(wvhen (and (at briefcase 7loc) (location 7new)
(not (= ?loc 7new))
(in dictionary briefcase))
(and (at dictionary 7new)
(not (at dictionary 7loc))))

A consequence of this approach is that each of the el-
ements becomes a semi-independent rule which can be
fired separately which results in a requirement for more
complex processing of mutex relations during the search
phases of the Graphplan algorithm. The approach we
take in OCL-Graph is similar in that when we ground
the operators the result will have one clause in the con-
ditional effects section for each object for which the
grounding of the conditional effects clause is consistent
with the necessary and prevailing sections of the opera-
tor. The growth of the number of clauses in the condi-
tional effects section as a result of grounding is linear.
It is bounded by the number of objects in the problem
domain of the correct object sort. We will delay further
discussion until we have presented the OCL-Graph al-
gorithm.

The Object Graph
OCL Input

We will assume that the domain model is input using a
restricted from of OCL to coincide with the input lan-
guage specified in reference (Blum & Furst 1997), but
extended to deal with conditional effects. In particu-
lar, OCL operator schemas are translated to a ground
set. The conditional element is expanded to include all
consistent groundings of the conditional element. Dur-
ing the grounding which is done as a preprocessor step,
static predicates are used to ensure consistent ground-
ings. For example the static information about which
objects fit in the briefcase and which objects fit in the
suitcase is used to ensure that a conditional clause for
moving the ‘suit’ which does not fit in the briefcase is
not generated. The ground operators to move the brief-
case in a world containing a cheque a dictionary and a
suit from home to the office expands to:

operator (move (briefcase, home, office),
% Prevail
a,
% Necessary
[ssc(bag,briefcase, (
[at_bag(briefcase, home)]
=>
[at_bag(briefcase, office)]))],
% Conditional
[
ssc(thing, cheque, (
[at_thing(cheque, home),
inside (cheque, briefcase)]
=>
[at_thing(cheque, office),
inside(cheque, briefcase)])),
ssc(thing,dictionary, (
[at_thing(dictionary, home),
inside(dictionary, briefcase)]
=>
[at_thing(dictionary, office),
inside(dictionary, briefcase)]))]).

The initial state is a total mapping between object
identifiers and substates, and a goal condition is a map-
ping between object identifiers and ground substate ex-
pressions.

Building Up the Graph

We build an ‘OCL-graph’ in the spirit of Graphplan by
first substituting the idea of a proposition level with
what we call an ‘object level’, defined as a (total) map-
ping (called level(n) where n is odd) between the set
of object identifiers O-ids and the partitioned set of all
possible substates for that object:

level(n) : O-ids = Table

where Table is a set of substates partitioned by the
substate class definitions. The intuitive idea is that
if an object situation (i,ss) is potentially reachable at
level n through the execution of operators then ss will
be somewhere in the (partitioned) set ‘level(n)l[i]’.

Two immediate consequences of this representation
are that:

submitted, aips-00

(a) The size of every object level in a plan graph is
always fixed as the number of objects in the initial state,
although the size of the range sets of this map generally
increases to the point where all legal substates for the
objects, as defined in the substate class definition, are
in the range.

(b) In a literal-based Graphplan any subset of the
propositions at each propositional level can form a goal
set which is potentially satisfiable. For example in
the briefcase world, the set {in_thing(cheque,briefcase),
at_thing(cheque,home),outside(cheque)} would be ac-
ceptable in principle, but would be found to be incon-
sistent through operator back chaining. OCL restricts
goal sets to a set of legal object expressions - hence the
above expression would not be allowed as the cheque’s
substate expression is not well formed (it is not a spe-
cialisation of either one of thing’s two substate classes).

To create level(n+2) from level(n), we copy over the
old mapping (this parallels the use of ‘no-ops’ in refer-
ence (Blum & Furst 1997)) and add new substates to
level(n+2)’s range if they are created by operator appli-
cation at level(n+1). Consider the briefcase world with
only two locations involved (home (h) and office (0))
with the initial state of the briefcase (b) at home, and
only two things the cheque (c) which is at home inside
the briefcase and the dictionary (d) which is outside the
briefcase. Then the development form the initial state
in level 1 to level 3 is as follows:

level (1) [c] =

{partition 1: [at_thing(c,h),inside(c,b)}
level(1)[d] =

{partition 1: [at_thing(d,h) ,outside(d)]}
level(1) [b] =

{partition 1: [at_bag(b,h)]}

level(3)[c] =
{partition 1: [at_thing(c,h),inside(c,b)],
[at_thing(c,o0) ,inside(c,b)],
partition 2: [at_thing(c,h),outside(c)]}
level(3)[d] =
{partition 1: [at_thing(d,h) ,outside(d)],
partition 2: [at_thing(d,h),inside(d,b)]1}
level(3) [b] =
{partition 1: [at_bag(b,h)],
[at_bag(b,0)]1}

The operators applicable at level 2 are take_out(c,b),
put_in(d,b), and move(b,h,0), with the conditional ef-
fect of moving the cheque from home to the office.

Links

We define contains(level(n), SE), where SE is a set of
ground object expressions, and n is odd, as being true if
for each (i,se) in SE, there is a substate ss € level(n)][i]
such that se C ss. An operator is applicable to level(n)
if contains(level(n),0.Pre) is true, where O.Pre are the
operator’s preconditions as defined above. For exam-
ple, contains(level(3),[at_bag(b,0)]) is true. Note that
O.Pre excludes any elements for the operators condi-
tional effects.

If operator O 1is applicable at level(n), and

5

level(n+2)[i] contains ss, then a link lk(O, i, ss, mode)
is stored in level(n+1). If (a) O changes i’s substate
to ss or (b) (i,se) € O.prev and se C ss or (¢) O is a
no-op preserving ss from level(n)[i] to level(n+2)[i] then
we record mode as either ‘change’; ‘prevail’ or ‘no-op’
depending on each of the cases (a) - (¢). In the running
example we therefore store the following:

level(3) [c] =
{partition 1: [at_thing(c,h),outside(c)],
partition 2: [at_thing(c,h),inside(c,b)]}
level(3)[d] =
{partition 1: [at_thing(d,h),outside(d)],
partition 2: [at_thing(d,h),inside(d,b)]}
level(3) [b] =
{partition 1: [at_bag(b,h)],
[at_bag(b,0)]1}

level(2) =

{1k (no-op-1,c, [at_thing(c,h) ,inside(c,b)],
no-op),

1k (take_out(c,b) ,c, [at_thing(c,h) ,outside(c)],
change),

1k (take_out(c,b),b, [at_bag(b,h)],prevail),

1k (no-op-2,d, [at_thing(d,h) ,outside(d)],
no-op),

lk(put_in(d,b) ,d, [at_thing(d,h),inside(d,b)],
change) ,

lk(put_in(d,b),b, [at_bag(b,h)] ,prevail),

1k (no-op-3,b, [at_bag(b,h)] ,no-op),

1k (move(b,h,o0),b, [at_bag(b,0)],change)}

To process the conditional effects in the forwards phase
of the algorithm, new links and object substates at level
n + 2 are added as follows: for each conditional effect
clause ssc in the applicable operators O at level n +
1 if contains(level(n), O.cond[ssc].lhs) then add if not
already present O.cond[ssc].rhs to level n+2 and add a
link from O to O.cond|[ssc].rhs and label the link ‘cond’.
For the briefcase this adds a new substate to level(3)[c]
and adds a new link to record the application of the
effect as follows:

level(3) [c] =
{partition 1: [at_thing(c,h),outside(c)],
partition 2: [at_thing(c,h),inside(c,b)],
[at_thing(c,0) ,inside(c,b)]}

1k (move(b,h,0),c, [at_thing(c,o0) ,inside(c,b)],cond)}.

We have applied one of the conditional elements in
the ‘move’ operator. In applying such conditional el-
ements we only consider operators that have already
been applied, that is operators that have their prevail-
ing and necessary preconditions fulfilled at that level,
these operators already have their necessary effects
and links recorded as described above. The notation
O.cond[n].lhs is to be read as the left hand side (pre-
condition) of the nth clause of the conditional effects
clauses of operator O.

Mutual Exclusions in OCL-Graph

The forward development of the plan graph spreads in
the manner described above. It is checked, however,

submitted, aips-00

by the use of mutual exclusion conditions on both op-
erators and substates in the object levels. Blum and
Furst’s ‘Interference’ statement ((Blum & Furst 1997),
section 2.2) is paraphrased as follows: ‘If either of ac-
tions O1 and O2 deletes a precondition or Add-Effect
of the other, they are mutually exclusive at that level.
Secondly if actions 01 and 02 have preconditions which
are recorded as mutually exclusive then they are mutu-
ally exclusive’ The idea is then to check each operator
at each level against all the others, resulting in a set of
binary mutual exclusions (which are not transitive).

We exploit the structure of OCL to give the following
definition:

For each object identifier 4 in the object level(n+2),
the set

{ O :1k(O,i,ss,mode) € level(n+1) }

forms an N-ary mutual exclusion relation (where N
is the size of the set).

In other words, all operators that support the
same object form a set whose members are mu-
tually exclusive to one another. The rationale is
as follows: if operators O1 and O2 change or rely
on the same object being in a particular substate,
then they would in general interfere with each other.
There is, however, two exceptions to the general rule
above. If lk(O1,i,ss,prevail) and 1k(02,i,ss,prevail) are
in level(n+1), or 1k(O1,i,ss,prevail) and 1k(02,i,ss,no-
op) are in level(n+1), then it does not follow that O1
and O2 are mutually exclusive. In practice we say
01 and O2 conflict if there is an reference to different
states of the same object either in the preconditions
of the two operators or in the operators necessary ef-
fects. Secondly if any operation has a conditional effect
1k(03,i,ss,cond) that has fired we do not add the oper-
ator to any mutual exclusion set as a result of conflicts
between ss and other states of i. We do not add the
conflict at this stage as the conditional effect may not
be used in the final plan even though the operator is.
We do not in the forwards development of the graph de-
tect if the firing of one element in an operator will force
the firing of another. This is contrary to the practice of
(Anderson, Smith, & Weld 1998).

The case made by (Anderson, Smith, & Weld 1998)
for the need to recording such induced mutexes derives
from two cases.

e If two components of an operator are such that the
preconditions of one of the components cannot be
logically met without meeting the preconditions of
the second component then we need to record that
component one will be mutexed with all the operators
component two is mutex with.

e The second case is harder to paraphrase but essen-
tially if component one can fire and due to absence of
other information the only way component two could
fail to fire is if component one did not fire then again
we can deduce that one forces two and should be mu-
texed with the operators two is mutexed with.

6

In OCL the first of the cases cannot arise as each
element of an operator will refer to a different object
and hence the preconditions for a conditional clause to
fire cannot be contained in the other elements of the
operator. The second case can arise. For example in
the briefcase world if at level one the cheque is inside
the briefcase, and we move it, then the cheque will also
move. There is no other possibility as no other possible
state of the cheque is recorded at this level. At later
levels other states of the cheque will also be recorded
and hence there will not be the same guarantee that
moving the briefcase moves the cheque.

We could search for such cases but they are just a
special case of a conditional effect being forced as a
result of the interplay of the preconditions of a set of
operators at a given level. We could not deal with the
general case in the forward phase of graph development
as the set of operators will be dependent on the choices
made in identifying a candidate valid plan. We there-
fore leave the backwards search phase of the planner to
take care of potential conflicts arising from such condi-
tional effects.

Employing this method to the example above, the
mutexes turn out to be:
mutex(2) = {

{ no-op-1, take_out(c,b)},

{ no-op-2, put_in(d,b)},

{ move(b,h,0), no-op-3 },

{ move(b,h,0), take_out(c,b) },

{ move(b,h,0), put_in(d,b) } }

The mutex that we miss by delaying consideration of
conditional effects is {move(b,h,0), no-op-1} . That
is we cannot move the briefcase from home to the of-
fice with the cheque inside and simultaneous leave the
cheque inside the briefcase at home. Note that the ex-
ceptions to the general mutex rule rule collapses the
mutex formed by considering the ‘briefcase’ to binary
mutexes.

Using the set of mutexes, we can now define the con-
cept of consistent operator sets, which will be used in
the algorithm below:

A set of operators Y, applicable at level(n), is
consistent if
- 3M € mutex(n+1) : [MNY |>1

In other words, a set of operators is consistent if it
does not contain 2 or more operators in the mutexes
at level n. This however says nothing about possible
conflicts arising out of the use of conditional effects.

Mutual exclusion conditions on object levels:
In the original Graphplan description, two propositions
pl and p2 were mutually exclusive if all operators creat-
ing proposition pl were exclusive of operators for cre-
ating p2. In the OCL formulation, mutual exclusion
of object expressions (i,sel) and (j,se2) is immediately
true if i = j and sel and se2 fall into different substate
classes. If i <> j then the two states sel and se2 are
mutually exclusive if all operations that support sel are
mutually exclusive of all operations that support se2,
which can be checked using the stored mutex relations.

submitted, aips-00
The OCL-graph Algorithm

algorithm OCL-graph
In O-ids : Object identifiers; I : O-ids = Substates,
Ops : Ground Operators, G : Goals
Out P : Parallel Plan
Types level(n) (n odd) is a map O-ids = Table, level(n)
(n even) is a set of links
Types mutex(n) is a set of operator sets
1. Vi € O-ids: level(1)[i] = {I[i]}
2. n:=1;
3. ACHIEVE(G,1, P) ;
4. while (P = null) do
5. level(n+2) := level(n);
6. links(n+1) := { };mutex(n+1) = { };
7. Vie 0-ids: V ss € level(n+2)[i] :
add lk(no-op-X, i, ss, no-op) to level(n+1);
8 VO € Opsdo:
9 if contains(level(n), O.Pre) then

10. if not MUTEX(O.Pre,n) then
11. V(i,ss) € O.RHS: add ss to level(n+2)[i],
12. add 1k(0O,i,ss,change) to level(n+1);
13. V (i,se) € O.prev:
14. if se C ss & ss € level(n+2)[i]
15. then add 1k(O,i,ss,prevail) to level(n+1);
16. V ssc € O.cond:
17. if contains(level(n),ssc.LHS) &
not MUTEX (Pre N ssc.LHS)
18. then add ssc.RHS to level(n+2)[ssc.i];
19. add 1k(O,ssc.i,ssc.RHS,cond), to level(n+1);
20. end if
21. end if
22. end if
23. end for;

24. Vie O-ids:
add {O : 1k(0,i,ss,mode) € level(n+1)} to
mutex(n+1) and deal with exceptions;
25. n:=n+2;
26. if contains(G,level(n)) then ACHIEVE(G, n, P);
27. end while
28. end.

Figure 1: An Outline of the Object-Graph Planning
Algorithm

Forwards Phase

Figure 1 shows the overall algorithm. Line 1 initialises
the first level in the plan graph using the initial state.
If the goals are not trivially achieved (Line 3), the algo-
rithm builds two new levels, a new object level (n+2)
and a link level (n+1) First in Line 7 the object states
of level n are copied to level n+2 and the no-ops links
added (note each no-op is given a unique identifier no-
op-X). Following the addition of the no-ops, the code in
the internal loop (Lines 8 to 23) applies the domain op-
erators initially without reference to their conditional

7

effects and the new object level is augmented and ap-
propriate links added (lines 11,to 15). Following the
application of an operator each state change clause of
the operator’s conditional effects is considered and if
its preconditions are met and do not conflict with the
preconditions of the prevail and necessary section it is
applied and the appropriate substates and links added
to the corresponding levels. (lines 16 to 20) After the
loop adding all new substates to level n+2 and all links
to level n+1 completes, operator mutex sets are built
and added to level n + 1 in Line 24.

procedure ACHIEVE(SS : set of substate expressions,
n : odd integer, P : plan);

Global levels, mutexes

Out a parallel plan P;

1. if n = 1 & contains(level(1), SS) then P = { }
n

2. elseif n = 1 and not contains(level(1),SS) the

3. P =null

4. else

5. P’ = null;

6. choose Y := a consistent set of operators that

achieve a set of substates containing SS;
7. while(Y <> null & P’ = null) do
8.

Y’ := union of all the operators necessary
and prevailing preconditions in Y;
9. Y” = {};
10. while(Y” <> null & P’ = null) do
11. Y” := COND_PRECONDITIONS(Y,n)
12. ifY” <> null then
13. ACHIEVE({Y’UY” } n-2,P’)

14. end while
15. if not(P’ = null) then

16. P := append(P’)Y)

17. else

18. systematically generate another choice for Y
19. end if

20. end while

21. end if

22. end.

Figure 2: Achieve Procedure for the Object-Graph Al-
gorithm

Backwards Phase

Figure 2 details the definitions of ‘ACHIEVE’ which
has overall control of the backwards search for a valid
plan. ACHIEVE searches for a consistent operator
set Y to achieve G, and if it finds one first calls
COND_PRECONDITIONS to determine which con-
ditional effects of the operators in set Y are required
to achieve G and adds the preconditions of those ele-
ments to the necessary and prevailing preconditions of
the operators Y. ACHIEVE then recursively calls it-
self at level(n-2) with the set of preconditions of Y as

submitted, aips-00

the new goals to achieve. The definition of consistent
in Line 6 and 18 is left open ended, and depends on
whether mutexes are stored concerning substates, as
well as checking to see whether a goal expression is well
formed with respect to the object class definitions. As
a minimum the set of operators Y must not contain a
subset of cardinality greater than one that is contained
in the muter data structure for that level. The current
OCL-graph implementation does not memoize substate
mutexes, but this is a subject for on-going research.

function COND_PRECONDITIONS(O : operator set,
n : odd integer): set of substate expressions
Global levels,mutexes

1. SS’ := {SS - {se : se € O.RHS}};

2. Required := a set of conditional elements from
O.COND that achieve a set of substates
containing SS’;

3. while Required <> null do

4. Spare := {O.COND - Required};

5. ifnotMUTEX({O.Pre U Required.lhs},n) &

6. V ssc € Spare

7. if ssc.lhs satisfied in {O.Pre U Required.lhs} then
not ssc.rhs conflicts with
{O.RHS U Required.RHS}

8. then

9. return Required;

10. else

11. Required := choose new set from O.COND

that achieves the set of substates containing SS’

12. end if

13. end while
14. return null;
15. end.

Figure 3: Selection Conditional Effect Elements for
Plan Inclusion

The strategy for selecting conditional effects is shown
in Figure 3. In line 1 we determine which substate ex-
pressions of the Goal state have not been supported by
the necessary or no — op effects of the chosen operator
set O, these are the substate expressions that must be
supported by the conditional effects. Line 2 selects a set
of those substate change clauses from the conditional
effects of the operators O that satisfies the unfulfilled
goals SS’. The procedure then iterates on the selected
set, of clauses if any to check their consistency. To check
the consistency of a selection we first determine those
conditional effect clauses contained in the operator set
O which are not needed to support the goal (Spare).
We then check that the preconditions of each of the
‘Required’ clauses is consistent with the main precon-
ditions of the selected operator set O and that none of
the Spare conditional effects would if they are fired by

8

the preconditions already required conflict with the out-
comes of the operators selected. If these conditions are
met we have successfully chosen the conditional effects
needed and simple return them otherwise we must see
if an alternative set of conditional effect elements can
be generated to meet the requirement.

function MUTEX(SS : set of substate expressions, n :
odd integer): boolean
Global levels, mutexes

1. if n = 1 & contains(level(1), SS) then

2. MUTEX := false

3. else if n = 1 and not(I contains SS) then

4. MUTEX := true

5. else if 3 Y, a set of operators that achieve a set
of substates containing SS, and
not(3M € mutex(n-1) : |[MNY | > 1) then

6. MUTEX := false
7. else MUTEX := true
8. end.

Figure 4: Detecting mutex relations in a set of Object
Substates

The primary method for determining that a set of
object states are consistent is the function ‘MUTEX".
Figure 4 It does the checking very simply, by trying
to find a set of consistent operators at the level below
which add these substate expressions. Operators are
consistent if no subset containing two or more operators
is stored in the mutex structure at the corresponding
level.

Implementations

To try and establish the benefits of using OCL in a
Graphplan like algorithm two separate implementations
were created. The first, though it could process OCL
descriptions of planning domains, made no attempt to
benefit from the structure. Rather it was used to simply
extract the elements of the standard STRIPS style op-
erators. Essentially operators were still conceived of as
possessing a list of propositions which formed the pre-
conditions to an action and two lists of propositions,
the add list and the delete list. The add list contained
the new propositions made true as a result of the ap-
plication of the operator and the delete list contained
those propositions made false by the application of the
operator. In particular no attempt has been made to
utilise the grouping of atomic propositions by the object
they relate to. Similarly the internal data structures of
this implementation of Graphplan do not utilise ‘ob-
jects’. The graph is conceived of as made from propo-
sition layers i.e. the propositions potentially true at an
instant and links connecting the propositions in suc-
cessive layers where each such link corresponds to the

submitted, aips-00

application of a single operator. The graph also con-
tains edges between individual links to show that they
are mutually exclusive and edges between propositions
in the same layer to establish that they are mutually
exclusive. The implementation, though done in Pro-
log tries to be faithful to the description of Graphplan
provided above. This implementation is designed to
form our base measure for conducting experiments in
an attempt to investigate the advantages in utilising
the structures inherent in OCL. We will refer to this
implementation of Graphplan as ‘vanilla’ Graphplan.
The strategy we adopt to translate OCL operators into
STRIPS operators is not fully general. In some domains
the connections between predicates is not automatically
detected. Rather than hand craft the STRIPS opera-
tors we have only run comparisons where there is a
fairly close resemblance between the operators in the
two representations.

OCL-Graph data structures

The primary innovation in our second implementation
of Graphplan is to replace the proposition layers in the
graph with object layers. To assist in the searching of
these layers the map structure defined in the abstract
algorithm was flattened to allow easier searches for spe-
cific substates of a given object. Also to aid referencing
these states in operator links we introduced identifiers
for each such substate of an object at a given level.
The size of this map generally grows from one level to
another but it has an upper bound determined by the
number of objects in the problem domain and the num-
ber of substates of each object.

In our implementation of OCL-graph the action links
that join two adjacent object levels are stored in a struc-
ture that identifies the operation performed, the object
states that jointly form the preconditions of the action
and an element to identify the substates of objects re-
sulting from the application of the action. The back-
wards references to object substates forming the pre-
conditions of an action assist in the backwards search
undertaken during the achieve phases. This search is
also assisted by our ability to store the references both
to preconditions and to supported object substates us-
ing the identifiers mentioned previously.

The remaining data-structure that constitutes the
graph stores the mutual exclusions between operations.
In the implementation we do not explicitly record mu-
tex relations between different substates of the same
object though they are found in the attempt to achieve
or apply an operator. The only mutexes stored relate
to links. Finally to aid efficient searching for mutexes
we store them in a form of adjacency list.

Empirical Results

Tests have been carried out on a number of the standard
‘toy’ domains, such as the Rocket World and the Robot
World and the Briefcase world for conditional effects.
The tests have involved comparing times of the vanilla

9

version of Graphplan against the OCL version. The
restriction on the domains has risen due to the ease of
automatically deducing the STRIPS operators from the
OCL versions of these domains. The comparisons have
also been restricted by the fact that ‘vanilla’ does not
deal with conditional effects.

The results of our tests would indicate a speed up of
the algorithm by a factor of over 100 times. To give an
indication of the improvement the following table shows
the average result of running the two versions on prob-
lems in the Rocket world over ten different problems.
In these experiments the code was run in compiled Sic-

domain | vanilla | ocl
rocket 3.08 0.03

Table 1: Rocket - Robot World Timings

stus Prolog hosted on a Sun Ultra 5. The times refer
to cputime measured in minutes.

In addition to timing the algorithms several other
measurements were taken from the sample runs. We
were particularly interested in the relative sizes of the
graphs created by the two algorithms. To do this we
have compared the number of propositions at a given
level of the graph with the number of object states cre-
ated by running the same problem. We also compared
the number of operator links at a given level, The fig-
ures presented in the latter tables are for problems in
the rocket domain which has been extended by a refuel
operation to allow for some interesting depth.

vanilla ocl
Levels | propositions | links | Substates | links
1 7 n/a 5 n/a
3 21 19 17 17
5 30 7 19 37
7 30 104 30 69
9 30 104 30 116
11 n/a n/a 30 116

Table 2: Rocket World Levels

The difference in the numbers of levels in the plans
resulted from cases where refuel operations occurred.
OCL-Graph mutexed them with load or unload oper-
ations and hence produced longer plans than vanilla
Graphplan. Otherwise in the fairly typical example
shown here there does not appear to be a significant
variation in the sizes of the graph built by the two al-
gorithms.

Analysis

The first point to be made is that despite the promis-
ing results we recognise the limitations of the experi-
ment. Timings are a notoriously poor way of trying to

submitted, aips-00

measure efficiency and may be distorted by all sorts of
extraneous factors.

The test results are very encouraging and suggest
that there is a worthwhile efficiency improvement. This
is despite the fact that in our test cases the graph built
by the OCL-Graph may in some cases be larger than
the equivalent graph in the vanilla version of Graph-
plan. The larger graph can be a result of both the larger
number of object substates as compared to propositions
and the greater number of operator instantiations to
object substates than ground propositions. But even in
those cases the OCL version was faster. The efficiency
gain we conjecture results from the implicit mutezes in-
herent in storing object substates allowing both a faster
construction of explicit mutex relations and fewer op-
portunities for backtracking.

Conclusions

In this paper we have illustrated how a graph-based
algorithm can be extended to more structured repre-
sentations of planning domains. We have also shown
that there is a high probability that such an approach
will yield worthwhile efficiency gains. Our design of the
Object-Graph algorithm has thrown up various ways
in which the extra information content of OCL can be
used to make the graph-based algorithm more efficient.

They are many avenues for future work. First we
would like to extend the experimental base to cover
cases with a greater diversity of graph sizes, and to
experiment with more interesting domains possessing
more structure. Secondly, there is a need to attempt
to analyse the computational complexity of the OCL-
based algorithm in greater depth, and compare it with
the original. Thirdly, we need to extend the algorithm
to be able to accept the full OCL language, and to
improve the algorithm so that it uses the extra infor-
mation given in an OCL model. For example, domain
invariants typically found in an OCL model often read
as mutex constraints on a pair of substates. Finally, im-
provements to the basic algorithm such as dependency
directed backtracking (Kambhampati 1998) have not
been implemented but there is no reason to expect that
they would not be equally applicable to our version of
the algorithm.

References

Anderson, C. R.; Smith, D. E.; and Weld, D. S. 1998.
Conditional Effects in Graphplan. In Fourth Interna-
tional Conference on Artificial Intelligence Planning
Systems.

Blum, A. L., and Furst, M. L. 1997. Fast planning
through Planning Graph Analysis. Artificial Intelli-
gence 90:281-300.

Kambhampati, S.; Parker, E.; and Lambrecht, E.
1997. Understanding and Extending Graphplan. In
Proceedings of the 4th European Conference on Plan-
ning.

10

Kambhampati, S. 1998. On the relations between in-
telligent backtracking and explanation-based learning
in planning and constraint satisfactions. Artificial In-
telligence 105.

Kitchin, D. E., and McCluskey, T. L. 1996. Object-
centred planning. In Proceedings of the 15th Workshop
of the UK Planning SIG.

Kitchin, D. E. forthcoming,1999. Object-Centred Gen-
erative Planning. Ph.D. Dissertation, School of Com-
puting and Mathematics, University of Huddersfield.

Liu, D. 1999. The OCL Language Manual. Technical
report, Department of Computing Science, University
of Huddersfield .

McCluskey, T. L., and Kitchin, D. E. 1998. A Tool-
Supported Approach to Engineering HTN Planning
Models. In Proceedings of 10th IEEE International
Conference on Tools with Artificial Intelligence.

McCluskey, T. L., and Porteous, J. M. 1997. En-
gineering and Compiling Planning Domain Models to
Promote Validity and Efficiency. Artificial Intelligence
95:1-65.

N. Muscettola, P. P. Nayak, B. P., and Williams, B. C.
1998. Remote Agent: To Boldly Go Where No Al
System Has Gone Before. Artificial Intelligence 103(1-
2):5-48.

Porteous, J. M. 1993. Compilation-Based Performance
Improvement for Generative Planners. Ph.D. Disser-
tation, Department of Computer Science, The City
University.

