
Opmaker2: Efficient Action Schema Acquisition

T.L.McCluskey, S.N.Cresswell, N. E. Richardson and M.M.West
School of Computing and Engineering

The University of Huddersfield, Huddersfield HD1 3DH, UK

Abstract

The problem of formulating knowledge bases
containing specifications of dynamic knowledge
is a barrier to the widespread uptake of AI
planning. Machine learning has been used with
some success in the past, but the inputs re-
quired are either too detailed, or the learning
process has required many examples. Further,
learning has been confined to propositional ac-
tions or parts of actions such as preconditions.
The field of ontological engineering has had an
impact on the wider community in that appli-
cation ontologies (which contain ”static” struc-
tural knowledge of applications) are becoming
widespread. Here we introduce a methodology
that is based on the existence of a strong struc-
tural model of an application. Using a small
number of user training sequences, we illus-
trate how the method can induce action schema
and compound methods. To do this we extend
GIPO’s Opmaker system so that it can induce
actions from training sequences without inter-
mediate state information and without requir-
ing large numbers of examples. This method
shows the potential for considerably reducing
the burden of knowledge engineering, in that it
would be possible to embed the method into an
autonomous program (agent) which required to
do planning. We illustrate the algorithm as
part of an overall method to induce structured
domain model, and comment on initial results
that show the efficacy of the induced model em-
pirically.

Introduction

The problem of formulating knowledge bases
containing specifications of dynamic knowledge
is a barrier to the widespread uptake of AI plan-
ning. Current high profile applications such as
the use of planning technology within NASA’s
Mars Rover require persistent resources com-
prising of teams of highly skilled knowledge en-

gineers, In particular, a problem facing AI is to
overcome the need to hard code and manually
maintain action schema within agents (a prob-
lem which limits their autonomy). It is possible
to use learning techniques to help overcome the
problem, eg using tools which induce actions or
methods from examples. One method is to em-
bed agents with the ability to induce the de-
tailed specification of action schema from ex-
ample planning traces, possibly supplied by a
trainer. Planning traces are an ordered set of
action instances, where each action instance is
identified by name plus the object instances that
are affected or are necessarily present but not af-
fected, by action execution. This is the kind of
information normally expected as a solution to
planning problems.

In this paper we describe the results of an inves-
tigation into (re)constructing action schema and
planning heuristics from training sessions which
compose of a handful of action traces. The
main result is that it is possible for an agent to
induce detailed specifications of action schema
from single action traces automatically, with-
out requiring intermediate state information for
each training example. The trade-off is that the
agent’s domain description should contains in-
variants describing object relations and object
states. The induced actions are detailed enough
for use in planning engines. We present an algo-
rithm for generating such domain models, and
show how the primitive action schema can be
built up into domain models.

In our previous work we have shown how ‘flat’
domain actions can be induced from examples.
Actions can be induced using Opmaker (Mc-
Cluskey, Richardson, and Simpson 2002) which
has been embedded interactively in GIPO
(Simpson et al. 2001), (Simpson 2005). GIPO
aids domain construction, offering editors, vali-
dation tools, a graphical life-history editor and

planning tools. Output from GIPO is the com-
pleted and validated domain being modelled in
a variant of GIPO’s internal language OCL (Liu
and McCluskey 2000) or PDDL. Here we extend
GIPO’s Opmaker system so that it can induce
actions from training sequences and its static
object model alone, without intermediate state
information and without requiring large num-
bers of examples. This considerably reduces the
burden of knowledge engineering, so that a pro-
gram (agent) can perform knowledge acquisition
rather than it occurring through a human-driven
process supported by a tool such as GIPO.

The rationale for setting up this problem is as
follows. The acquisition / refinement of fac-
tual or static knowledge by agents is relatively
straightforward. In the context of the internet
and open systems, it is not unreasonable that
an agent can acquire and refine such knowledge
with some degree of autonomy. The rapid ex-
pansion of globally accessible ontologies within
standard formats such as OWL, support the no-
tion that intelligent agents will have access to
factual knowledge. In contrast, the amount of
effort needed to encode bug free, accurate ac-
tion specifications and planning heuristics, and
to maintain them, is significant. A necessary
precondition of the use of current automated
planning technology is that there exists a de-
tailed action specification, and in many cases,
heuristic knowledge. Hence we can ask the ques-
tion: for every agent that can perform planning,
must we hand code and hand maintain its ac-
tion descriptions? No, if agents are to achieve
this kind of autonomy, then they should be ca-
pable of learning and refining action knowledge
and heuristics.

The Learning Problem

The general situation is one where an agent
needs to perform reasoning about actions to
achieve a desired goal, and in particular perform
plan generation within an environment that it
has knowledge of. Actions are real world oper-
ations that change the state of object(s) in the
world in some way. The agent has knowledge of
objects, and collections of similar objects mak-
ing up distinct classes. It knows the possible
states of a typical object of each class. It has
knowledge of existing plans that other agents,
or a trainer, has used. These plans are written
in terms of verbs and affected objects (pick up
block A with gripper B, lift up wheel A with jack
B). Additionally, the agent is assumed to have
axioms describing a naive physics of the world.

However, the agent has not an explicit specifica-
tion of actions in such a way that it can reason
about their synthesis (or the agent does have
such a specification but needs to refine, main-
tain or evolve it).

Given this situation, the learning problem is to
induce a full parameterised specification of ac-
tions which can be used to do planning; and
to induce heuristics which can be used to make
the reasoning involved in the planning computa-
tionally tractable. Further, the agent should be
able to refine any existing parameterised spec-
ification of actions, and heuristics, that it cur-
rently holds. The action specifications should
be detailed enough so that they can be input to
mainstream planning technology as epitomised
by competitors in the IPC (the bi-annual inter-
national planning competition).

A Formulation of the Problem

We formulate the learning problem as follows:

INPUT: Assume the input to the learning prob-
lem is a ’model’ of the world, and a set of train-
ing sequences, given as follows:
1.1 - there are a number of classes each contain-
ing a set of objects, each object belongs to one
set (called a sort)
1.2 - each object of each class may be related
to objects of other classes, and have property
- value relationships with set of basic values
(boolean or scalar). The relations and proper-
ties are defined in the usual way using predi-
cates.
1.3 - each object of each class at a moment in
time has a fixed ’state’. This state is defined by
its relationship with other objects and/or the
value of properties. There are a small, finite
number of states for each object class.
1.4 - there is a set I of invariants relating the
predicates given above. Informally, a set is
adequate if any ’common sense’ inference can
be made from them, such as normal inferences
about spatial relations.
1.5 a set of training plans of the form

(initial state, final state)
name1 p1, o1

name2 p2, o2

..
nameq pq , oq

name1..nameq are the names of the q actions
in the training plan, and they are assumed to
transform the initial state into the final state.
Here p1, p2, ..pq are each lists of object names (

they could be null) of unchanging or ’prevail’ ob-
jects required by an action, and o1, o2, ..oq are
each lists of object names affected by the exe-
cution of the action. Each of the list of prevail
objects must be present in some state, but that
state does not change during action execution.

- a (possibly empty) set of existing action
schema. Within this formulation, action schema
are parameterised object transformations.

OUTPUT a set of action schema that - is consis-
tent with the static domain model components
(1.1 -1.4); - can be instantiated into the training
plans (1.5) supplied, and will transform the ini-
tial state into the final state heuristics derived
from the training plans that can be used to guide
a planner

Method

The learning method is specified by the algo-
rithm description in Figure 1. In outline, the
method is:

(i) use a set of heuristics and inferences to track
the changing states of each object referred to
within a training example, taking advantage of
the static, object-state information and invari-
ants within the domain model. Infer full details
of object transitions for each dynamic object.

(ii) use the techniques of the original Opmaker
algorithm (McCluskey, Richardson, and Simp-
son 2002) to generalise object references and
create parameterised operator schema from the
specific object transitions extracted in (i) from
the training examples.

To illustrate the main innovations of the
method, we will use an example walk-though
taken from our empirical evaluation involving an
extended tyre-change domain. Assume a train-
ing sequence SEQ is input into Opmaker2 and
this has components as follows:

name: do up; prevail: wrench0,jack0, trim1;
changing: hub1,nuts1
name: jack down; changing: hub1,jack0
name: tighten; prevail: wrench0,hub1,trim1;
changing: nuts1
name: apply trim; prevail: hub1; changing:
trim1,wheel5

This illustrates a short procedure for making a
car wheel ready for operation once it has been

hung on to an appropriate wheel hub. Infor-
mally, do up is the operation of putting the nuts
on the hub of a wheel when it is jacked up. The
names such as wrench0, hub1 are references to
actual objects. The prevail objects have to be
necessarily present in a particular state but re-
main unaffected (’wrench0’ is available, ’jack0’
is jacking up the wheel, ’trim1’ is hub1’s wheel
trim and has to have been removed). These ob-
jects need to be in particular states for the ac-
tion to execute, and those states ’prevail’ or stay
the same during execution of the action. The
’changing’ objects change state (hub1 becomes
fastened up, the nuts1 are fastened up).

To illustrate some of the definitions in Line 1 of
the algorithm in Figure 1, we have components
of an object as follows:

hub1.c = [unfastened(hub1),
jacked up(hub1,jack0)]
hub1.f = [on ground(hub1), fastened(hub1)]
hub1.s = hub

Examples of other operations are (h and j are
parameters):

hub1.cg = [unfastened(h), jacked up(h,j)]
hub1.cs = [hub,jack]

Line 2 iterates through all the training exam-
ples. For the first training example, the problem
is to determine what the new states are of hub1
and nuts1.

In Line 3, let P = [w, j, t, n, h]. In Lines 4-6,
the prevail components are got from the cur-
rent state classes of wrench0, jack0 and trim1,
as in the original Opmaker algorithm. The loop
starting on line 7 is intended to determine the
destination of each object that is changed by the
action being learned. hub1 is the first changing
object. From the given partial definition of the
domain, it has four state classes which we name
S1-4:

S1 = [on ground(h),fastened(h)],
S2 = [jacked up(h,j),fastened(h)],
S3 = [free(h),jacked up(h,j),unfastened(h)],
S4 = [unfastened(h),jacked up(h,j)]

hub1’s current state is not necessarily its final
one, as in the training sequence it is referred to
again (in the second of the sequence, jack down)
as a changing object. Hence line 10 is executed.
X cannot be S4 (since this is currently the gen-
eralisation of the object’s current state, and the

program Opmaker2
In partial domain model
In training sequence SEQ with N actions, and each e ∈ SEQ has components:
e.Name, e.prevail , e.changing = name, unchanging objects, changing objects,
Out parameterised action descriptions and HTN methods
1. Definitions:
O .c = current state of an object O
O .s = sort of object O
O .f = final state of an object O
S g = state class of some groundstate S
Og = a distinct parameter which ranges through the sort of object O
Xs = set of all sorts of parameters and objects in expression X
2.for each e in SEQ do
3. Form P = list of Og for all O in e.preval ∪ e.changing ;
4. for each O in list e.preval do
5. store component of the prevail (O .s,Og ,O .cg)
6. end for
7. for each O in list e.changing do
8. if O is not affected by actions in the rest of SEQ
9. then let X = O .f g

10. else choose X from the state classes of O .c such that
11. X 6= O .cg and Ps contains Xs

12. store transition T = (O .s,Og ,O .cg ⇒ X)
13. match free vars in T with those in P
14. end for
15. form actions from cross-product of all stored transitions
16. such that the actions are consistent with invariants
17. end for
18. produce a method from the sequences of actions as in Opmaker.
procedure match free vars in T with those in P
1. repeat
2. for each parameter X in transition T , X 6= O ,
3. choose a parameter Y in P to match with
4. X such that Y 6= O , sort(X) = sort(Y),
5. end for
6. until parameter match set is consistent
7. end

Figure 1: Outline Design of the Opmaker2 Algorithm

object has to change state class). In Line 11 Ps

(= [wrench, jack, trim, nuts, hub]) contains all
the sorts in each of state classes S1,S2 and S3,
and so this does not narrow down the choices.
Hence 3 transitions are stored:

(hub, h, [unfastened(h),jacked up(h,j)] →
[on ground(h),fastened(h)])
(hub, h, [unfastened(h),jacked up(h,j)] →
[free(h),jacked up(h,j),unfastened(h)])
(hub, h, [unfastened(h),jacked up(h,j)] →
[jacked up(h,j),fastened(h)])

Iteration of line 7 with object nuts1 occurs next.
It has three states:

T1 = [tight(N,h)]
T2 = [loose(N,h)]
T3 = [have nuts(N)]

This leads to 2 possible transitions:

(nuts, N, [have nuts(N)] → [tight(N,h)])
(nuts, N, [have nuts(N)] → [loose(N,h)])

and hence 6 possible induced action schema (line
15). These six options are then checked for con-
sistency with the domain invariants which are
shown in Figure 2. The conjunction of state
constraints in both the LHS and RHS of transi-
tions of the newly formed action schema must be
consistent with these invariants. In cases where
they are not, the action schema is discarded.

This reduces the number of options to a single
action schema. Processing of the other 3 ac-
tions in the training sequence leads to a single
interpretation of state changes, as the chang-
ing objects involved are all in their final states,
and hence 3 more generalised action schemas
are generated. Finally, a hierarchical method
is generated (line 18) by combining the 4 ac-
tion schema in a similar fashion to the original
Opmaker system (McCluskey, Richardson, and
Simpson 2002).

Experiments and Results

The method has been implemented and merged
with the original Opmaker system. We are using
the same experimental approach as we used to
test the original system:

• We hand-craft training sequences from a
range of domains selecting actions that will
build sensible methods for that domain.

• We use Opmaker2 to induce actions and hier-
archical (HTN-type) methods from the train-
ing sequences.

• Using standard planners, we compare perfor-
mance using old hand-crafted action schema
to the use of induced schema.

Success will be judged using the following crite-
ria:

• If a valid set of unique new actions is defined
as actions that can solve the same problems
the original training sequences were aimed at,
can Opmaker2 induce these without having
to encode a great deal of invariants into the
domain models?

• Is it more efficient in terms of effort time to
construct a domain using Opmaker2?

• Is it at least as efficient, in terms of planning
time, to reach goals using Opmaker2 defined
actions and methods?

Up to now we have experimented with 2 domain
models: the extended tyre world, and the hiking
domain (see http://planform.hud.ac.uk/gipo/
for details of these).

Since induction sequences deliver several actions
and a single method, initial sequences were tai-
lored to produce a meaningful method, and suf-
ficient initial sequences were composed to cover
all the major sub-tasks that could be required
by the domain. In each case the agent began
by knowing domain knowledge but had sketchy
or non-existent facts about its potential actions.
For the Extended Tyre World we devised 7 se-
quences of between 2 and 5 actions in length.
After adding 8 invariants to the domain we in-
duced a set of actions and methods and using
these we produced a domain with 22 actions and
7 methods. The new version was tested over
8 tasks in two ways - firstly using just actions
in the planning and secondly using either just
methods, or a combination of methods and ac-
tions. To illustrate the results, two of the ac-
tions that were induced from the running exam-
ple were as follows:

operator(jack_down(Hub1,Jack0),
[],
[sc(hub,Hub1,[jacked_up(Hub1,Jack0),

fastened(Hub1)] =>
[on_ground(Hub1),fastened(Hub1)]),

sc(jack,Jack0,[jack_in_use(Jack0,Hub1)] =>
[have_jack(Jack0)])], []).

1. Equivalence between hub fastened and nuts tight/loose on hub.

∀H :hub . [fastened(H)⇐⇒ ∃N :nuts . (tight(N , H) ∨ loose(N , H))]

2. Equivalence between jack in use and jacked up.

∀H :hub . ∀ J :jack . [jack in use(J , H)⇐⇒ jacked up(H , J)]

3. Equivalence between hub not free and wheel on hub.

∀H :hub . [¬free(H)⇐⇒ ∃W :wheel . wheel on(W , H)]

4. Equivalence between trim on wheel and trim on.

∀T :wheel trim . ∀W :wheel . [trim on wheel(T , W)⇐⇒ trim on(W , T)]

5. Only a single set of nuts can be on a hub.

∀H :hub . ∀N1:nuts . ∀N2:nuts .

[((tight(N1, H) ∨ loose(N1, H))
∧

(tight(N2, H) ∨ loose(N2, H))

)
⇒ (N1 = N2)

]

6. Only a single wheel can be on a hub.

∀H :hub . ∀W1:wheel . ∀W2:wheel .

[(wheel on(W1, H)
∧

wheel on(W2, H)

)
⇒ (W1 = W2)

]

7. Domain constraint: If nuts are tight on a hub then the hub must be on the ground.

∀H :hub . [(∃N :nuts . tight(N , H))⇒ on ground(H)]

8. Domain constraint: if a trim is on a wheel, then the wheel is on a hub and the nuts are tight.

∀W :wheel . ∃T :wheel trim .

[
trim on wheel(T , W)⇒

(∃H :hub . wheel on(W , H)) ∧ (∃N :nuts . tight(N , H))

]

Figure 2: Invariants encoded in the Extended Tyre World

operator(tighten(Wrench0,Hub1,Nuts1,Trim1),
[se(wrench,Wrench0,[have_wrench(Wrench0)]),
se(hub,Hub1,[on_ground(Hub1),fastened(Hub1)]),
se(wheel_trim,Trim1,[trim_off(Trim1)])],
[sc(nuts,Nuts1,[loose(Nuts1,Hub1)] =>

[tight(Nuts1,Hub1)])], []).

Where just actions were used in planning, plan
times for short plans of up to 10 to 12 actions
were about the same as for the hand-crafted
version of the domain. For plans longer than
12 actions both versions took increasingly long
times to solve. However where methods or com-
binations of actions and methods were used plan
times were significantly shorter. The full plan-
ning problem for this extended domain is defined
to be: ”A car is found to have two flat tyres,
one is found to be flat and can be fixed by use
of the pump, whilst the other is punctured and
requires the full tyre change described in the pre-
vious version of the domain”. Using just actions
no solution was found to this problem after 36
hours but using methods and just a few actions
a correct solution was found after 11 seconds.

Experimentation with the hiking domain is at
an earlier stage. As yet no invariants have been
added to the domain. Without these we do not
get unique sets of example material for induction
but already we have seen actions generated. We
identified 5 potential methods for this domain
and for four of these we obtained example sets
of no larger than 6. However the fifth generated
28 example sets so either a set of invariants will
be added to the agent’s knowledge, or we will
use theory refinement to reduce the example sets
further.

From the results obtained so far we can con-
clude that an agent, given a ‘working stock’ of
potential action sequences, and having domain
knowledge and a ‘belief’ about the states of ob-
jects it ‘knows’ about will be able to generate its
own examples and use them to supply itself with
paramerised actions to suit every possible object
combination. Since methods can be formed from
the action sequences the agent should be able to
plan efficiently and autonomously.

Related Work

The authors of (Garland, Ryall, and Rich 2001)
have developed a system (Collagen) which learns
task models from examples. Their works is sim-
ilar to ours in that they show orderings of the
task to achieve the task and these contain both

primitives and non-primitives. In (Wu, Yang,
and Jiang 2005) the authors describe ARMS,
a system in which operators are learned with-
out the need for user intervention. However
ARMS requires many training examples con-
taining valid solution sequences, and presently
is capable of inducing only ‘flat’ domains.

Our work is also aimed at learning domains
containing both action schema and hierarchi-
cal schema (methods) encapsulating several
schema. Practical planning domains are based
on ‘hierarchical task network’ (HTN) decompo-
sition. The chief difference between the HTN
paradigm and classical domains is that in the
former ‘compound’ tasks can be decomposed
into the simpler ‘tasks’ particular to classical do-
mains. However HTNs can be difficult to con-
struct manually and authors have worked in pro-
ducing these using methods from machine learn-
ing. In (Erol, Hendler, and Nau 1996) the au-
thors argue that HTN operators are more ex-
pressive than those of classical domains as well
as being more efficient. Theoretical underpin-
ning for ‘High Level Actions’ (HLAs) is pre-
sented in (Marthi, Wolfe, and Russell 2007).
Each HLA admits one or more refinements into
sequences of actions, where an action might be
high level or primitive. The paper introduces a
provably sound and complete algorithm which
is implemented using a STRIPS-like language.
The algorithm takes advantage of ‘sound and
complete’ descriptions and, if successful, returns
a primitive refinement of some high-level plans
that achieves the goal set from the initial state.

In (Nejati, Langley, and Konik 2006) the au-
thors describe how they induce teleoreactive
logic programs from expert traces. The teleore-
active programs index methods by the goals they
achieve. They use methods derived from expla-
nation based learning to chain backwards from
the end result of the sample trace. The explana-
tion structure thus obtained is retained to pro-
duce new hierarchical structures. The method
is applied to ‘Depots’ which involves crates that
can be loaded into trucks and stacked. How-
ever the domain so constructed resulted in the
successful solution of very few problems.

Further theoretical work on HTN planning is
presented in (Ilghami et al. 2005). This pa-
per introduces a formalism whereby situations
are modelled where general information is avail-
able of tasks and sub-tasks, together with some
plan traces but there are no details. In the
early work all information about methods was
required except for the preconditions. This lim-

itation is overcome in later work by the same
group (Ilghami, Nau, and Munoz-Avila 2006) a
new algorithm ‘HDL’ (HTN Domain Learner)
is presented which learns HTN domain descrip-
tions from plan traces. Between 70 and 200 plan
traces are required to induce the descriptions.

HTN-MAKER is presented in (Hogg and
Munoz-Avila 2007). This receives as input a
STRIPS domain model, a collection of STRIPS
plans and task definitions and produces an HTN
domain model. The experimental hypothesis is
that after a few problems have been analysed
an HTN domain model will be ultimately ob-
tained able to solve most solvable problems. A
version of the logistics-transportation domain is
chosen for the experiment and good results are
obtained. However these good results are not
replicated for the blocks-world domain. One
problem is the large number of methods which
have to be learned, where one method might
subsume another. They suggest choosing the
most general method where this is the case. An-
other problem is for the planner to use methods
in an infinitely recursive manner.

Conclusions

Our work and the results reported here de-
pend on a structured view of domain knowl-
edge about objects being available. Whereas in
propositional, classical planning states are fairly
arbitrary sets of propositions, we assume that
the space of states is restricted in that objects
are pre-conceived to be a fixed set of plausi-
ble states. Within this framework, we have de-
scribed a method for inducing action schema
that advances the state of the art in that it
requires no intermediate state information, or
large numbers of training examples, to induce a
valid action schema set. Further, our prelimi-
nary results show that the hierarchical methods
induced with the action schema can lead to more
efficient domain models.

Opmaker2 is an improvement on Opmaker in
that it reduces and in some cases eliminates
the need for the user or trainer to give the sys-
tem intermediate state information. After Op-
maker2 automatically infers this intermediate
state information, it proceeds in the same fash-
ion as Opmaker and induces the same operator
schema. Opmaker2 can then logically be seen
as a superset of Opmaker, where the extra func-
tionality in Opmaker2 removes the need to ask
the trainer for more informations.

Our experiments with the ”Hiking Domain”
show that further development needs to be made
to the Opmaker2 algorithm so that it can cope
with domains with ”static” knowledge.

References

Erol, K.; Hendler, J.; and Nau, D. S. 1996.
Complexity Results for HTN Planning. Annals
of Mathematics and Artificial Intelligence 69–
83.
Garland; Ryall; and Rich. 2001. Learning hi-
erarchical task models by defining and refining
examples. In Proceedings of the First Interna-
tional Conference on Knowledge Capture.
Hogg, C., and Munoz-Avila, H. 2007. Learning
Hierarchical Task Networks from Plan Traces.
In Proceedings of the ICAPS’07 Workshop on
Artificial Intelligence Planning and Learning.
Ilghami, O.; Nau, D. S.; Muoz-Avila, H.; and
Aha, D. W. 2005. Learning preconditions for
planning from plan traces and HTN structure.
Computational Intelligence 21(4):388–143.
Ilghami, O.; Nau, D. S.; and Munoz-Avila, H.
2006. Learning to do htn planning. In Proceed-
ings of the Sixteenth International Conference
on Automated Planning and Scheduling, 390 –
393.
Liu, D., and McCluskey, T. L. 2000. The OCL
Language Manual, Version 1.2. Technical re-
port, Department of Computing and Mathe-
matical Sciences, University of Huddersfield .
Marthi, B.; Wolfe, J.; and Russell, S. 2007. Se-
mantics for High-level Actions. In Proceedings
of the International Conference on Automated
Planning and Scheduling, ICAPS 2007.
McCluskey, T. L.; Richardson, N. E.; and
Simpson, R. M. 2002. An Interactive Method
for Inducing Operator Descriptions. In The
Sixth International Conference on Artificial In-
telligence Planning Systems.
Nejati, N.; Langley, P.; and Konik, T. 2006.
Learning hierarchical task networks by obser-
vation. In ICML ’06: Proceedings of the 23rd
international conference on Machine learning,
665–672. New York, NY, USA: ACM Press.
Simpson, R. M.; McCluskey, T. L.; Zhao, W.;
Aylett, R. S.; and Doniat, C. 2001. GIPO: An
Integrated Graphical Tool to support Knowl-
edge Engineering in AI Planning. In Proceed-
ings of the 6th European Conference on Plan-
ning.
Simpson, R. M. 2005. Gipo graphical inter-
face for planning with objects. In Proceedings

of the International Conference for Knowledge
Engineering in Planning and Scheduling.
Wu, K.; Yang, Q.; and Jiang, Y. 2005. Arms:
Action-relation modelling system for learning
acquisition models. In Proceedings of the First
International Competition on Knowledge Engi-
neering for AI Planning.

