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Abstract:

Recent successful applications of Al planning technology have highlighted the knowledge en-
gineering of planning domain models as an important research area. We describe a prototype
implementation of a translation algorithm between two languages used in planning repre-
sentation: PDDL, a language used for communication of example domains between research
groups, and OCL;, a language developed specifically for planning domain modelling. The
translation algorithm has been used as part of OCLy’s tool support to import models ex-
pressed in PDDL to OCL}’s environment. In this paper we detail the translation algorithm
between the two languages, and discuss the issues that it uncovers. The tool performs well
when its output is measured against hand-crafted OCL, models, but more importantly, we
show how it has helped uncover insecurities in PDDL encodings.

1 Introduction

Despite many years of research into Al Planning and Scheduling, knowledge engineering for
applications of AI Planning technology is very much in its infancy. Recent successful Al
planning applications [12, 16, 2] have nonetheless highlighted the problems facing knowledge
engineering in planning. Questions include how to choose appropriate planner technology for
a given application, and how to encode knowledge into domain models for use with planning
algorithms. The engineering of knowledge-based planners has resulted in a set of workshops
and initiatives, including [3, 14].

Currently in the Al planning community an accepted syntax for exchange of models is
PDDL, a planning domain definition language. PDDL is a convention for representations
of actions, and many established planners can be obtained via the internet with a set of
domains encoded in this syntax. PDDL emerged from the need to construct a common
language for the biannual AIPS competitions (for details of PDDL and domain examples
consult reference [4]). Language conventions such as PDDL help the research community
to some extent in the problems of exchanging research information, and in the independent
validation of research results.

Domain definition languages such as PDDL, however, are not designed with the same
criteria in mind as a domain modelling language. The latter would be associated with a



domain building methodology, be structured to allow the expeditious capture of knowledge,
and have the benefit of a tools environment for knowledge engineering. OCLj is a family
of fairly simple planning-oriented domain modelling languages stemming from reference [11].
The benefit in using OCLy, is seen as twofold: to improve the planning knowledge acquisition
and validation process; and to improve and clarify the plan generation process in planning
systems. A range of planners have been implemented for use with OCLy, [17, 9, 7], and the
language is being used as a prototype for a collaborative UK project to create a knowledge
engineering platform for planning [15]. OCLj, is structured to allow the capture of object and
state-centred knowledge, as well as action-centred knowledge !, and it is encased in a tools
environment.

In this paper we discuss the issues raised in the construction of one of the tools in OCL}’s
environment: a translator, to help import models written in PDDL into the OCL;, environ-
ment. The translation is feasible because PDDL and OCLy share similar underlying assump-
tions about worlds - they are assumed closed, actions are deterministic and instantaneous. A
major difference, however, is that whereas PDDL action specifications are based on default
persistence, this assumption is limited in OCLy. The paper starts by briefly describing the
languages PDDL and OCLj and an association between the two which forms the basis for
the translation. This highlights some of the differences between the two languages. We then
outline the translation algorithm, and the results in applying it to example domain models.
The tool’s output is used to both make comparisons with hand-crafted models, and to identify
omissions and insecurities in the PDDL encodings.

2 The Planning Domain Definition Language

PDDL was created by the ATPS-98 Competition Committee to enable competitors to have
a common language for defining domains, and to aid the development of a set of problems
written in PDDL on which the different planners could be tested [4]. PDDL provides a wide
range of syntactic features, although not all planners are able to utilise all of them. Planners
can just deal with particular subsets of the features that the language offers by declaring
those language features required when the domain is defined. Here we only mention those
features relevant to the paper.

PDDL’s basic level of representation is the literal, and a model’s central element is a
set of operator schemae representing generalised domain actions (very much in the style of
‘classical planning’ literature with its roots in STRIPS [5]). Each operator is defined with a
precondition and effect, where the semantics are interpreted under the STRIPS assumptions.
Below are two examples of simple PDDL operator definitions which use typed parameters.
They belong to an encoding of an example domain called the Tyre World which was taken
from the distribution examples associated with reference [4]. A planner using the Tyre World
should be able to output sequences of ground operators to solve goals involving changing a
flat tyre. We will use this domain as a ”"running example”.

(:action loosen
:parameters (?n - nut 7h - hub)
:precondition (and (have wrench) (tight 7n 7h) (on-ground 7h))
:effect (and (loose 7n ?7h) (not (tight?n 7h))))

traditionally, models of planning domains were equated with a set of action specifications, and were
therefore only ‘action-centred’



(:taction fetch
:parameters (?x - (either tool wheel) ?7c - container)
:precondition (and (in ?x 7c) (open 7c))
:effect (and (have ?x)
(not (in ?x 7?c))))

The loosen operator models the action of undoing (but not removing) the nuts that fasten
a wheel onto a hub. The fetch operator models the action of removing a tool or a wheel from
a container in which it was stored (such as a car’s trunk).

Problems for a planner to solve are posed as an initial state (a set of ground literals)
and a goal condition. Although the current PDDL version includes many other features
(hierarchically-defined operators, domain axioms, safety constraints, quantification over pa-
rameter domains etc) the majority of the planners competing in the AIPS-98 competition
input the simple form of PDDL similar to that described above.

3 The Object-Centred Language OCLy

OCLy, was designed to be a kind of ‘lifted” STRIPS-language, aimed to keep the generality
of classical planning but to incorporate a model-building method and be structured to help
the validation and operationalisation of domain models. For more information on the OCLy
family and its development method, examples and tools, consult references [14, 8, 11]. An
OCLy, world is populated with dynamic/static objects grouped into sorts’. Each dynamic
object exists in one of a well defined set of states (called ‘substates’), where these substates
are characterised by predicates. On this view the application of an operator will result in
some of the objects in the domain moving from one substate to another. In addition to
describing the actions in the problem domain, OCL; provides information on the objects,
their sort hierarchy and the permissible states that the objects may be in. Relations and
propositions are not fully independent entities — rather they now belong to collections that
can be manipulated as a whole. So instead of dealing with literals planning algorithms reason
with objects. Similarly to a typed PDDL specification, the objects and the sorts they belong
to are predefined, as is the sort of each argument of each predicate in the OCL;, model.

An object description in a planning world is specified by a tuple (s,4,ss), where s is
a sort identifier, 7 is an object identifier of sort s, and ss is its substate. A substate is
a set of predicates which all describe i. For example, (nut,nut0, [loose(nut0, hubl)]) is an
object description meaning that nutO of sort nut is loosely done up on hubl. Or again,
(container, trunk1, [closed (trunkl), locked (trunkl)]) is an object description meaning that
container trunkl is closed and locked. Only a restricted set of predicates are allowed to
describe an object and appear in its substate. Substates operate under a closed world as-
sumption local to this restricted set - thus in the last example, the predicate open(trunkl)
is false because (a) it is used to describe objects of this sort (b) it does not appear in the
substate.

The domain modeller defines the predicates used to describe objects, and the form of each
substate, using substate class definitions. The predicate expressions in such definitions
are constructed to form a complete, disjoint covering of the space of substates for objects of

2we use the name ‘sorts’ rather than ‘object classes’ to emphasis that OCL, is an abstract object-centred
modelling language - in contrast to an OO implementation language



each sort. When fully ground, an expression from a substate class definition forms a legal
substate. For example, the substate class definitions for the sorts container, nut and hub are?:

substate_classes(container,C, [[closed(C)], [open(C)], [closed(C),locked(C)] 1)

substate_classes (nut,N, [[loose(N,H)], [tight (N,H)], [off_hub(N)]1])

substate_classes (hub,H, [[on_ground (H), fastened(H)], [jacked_up(H,J), fastened()],
[free(H),jacked_up(H,J) ,unfastened(H)] , [unfastened(H),jacked_up(H,1)] 1)

The first example means that objects of sort container can be either closed, not open
and not locked, or open, not closed and not locked, or closed, locked and not open (or here
is exclusive). Thus, in OCL, negation is implicit: if it is the case that — open(trunkl),
then this means that ¢runkl must be in one of two substates, its object description being
(container, trunkl, [closed(trunkl)]) or (container,trunkl,[closed(trunkl),locked(trunkl)]).
One can see that the examples of object descriptions given above contain valid substates
according to this definition.

A domain model is built up in OCLy by creating the operator set at the same time as
creating the substate class definitions. We define:

— an object expression to be a tuple (s, i, se) such that the expression part se is a gener-
alisation of one or more substates (se is normally a set of predicates containing variables).

— an object transition to be an expression of the form (s, i, se = ssc) where i is an object
identifier or a variable of sort s, (s,4,se) forms a valid object expression, and ssc is taken
from one of the substate class definitions. Thus when ssc is ground it will always be a valid
substate.

An action in a domain is represented by operator schema O with an identifier O.id, a
prevail condition O.prev, and a list of transitions. Each expression in O.prev must be true

before execution of O, and will remain true throughout operator execution.
Two OCL;, operators hand-crafted to (loosely) correspond to the PDDL operators above
are as follows:

operator(loosen(N,H,W),
[ (wrench,W,[have(W)]), (hub,H,[on_ground(H),fastened(H)]) 1,
[(nut,N, [tight (N,H)]1=>[loose(N,H)1)] )
operator (fetch(T,C),
[(container,C, [open(C)]1)],
[(tool_or_wheel,T, [in(T,C)]1=>[have(T)]1)])

As with PDDL, OCL; has many other features such as conditional operators, hierarchical
operators, atomic and general invariants, but due to lack of space we refer the reader to the
literature for these details.

4 Lifting PDDL To OCL,

4.1 The general framework

We base the translation on two main assumptions: (1) the input to the translator will be
any model written in the subset of PDDL that includes STRIPS-like operators with literals
having typed arguments. The feasibility of using other variants of PDDL as input is briefly
discussed in section 6 below. (2) the translation should keep, as far as possible, the names and

3whereas in PDDL we write a variable as an identifier beginning with ‘?’, in OCL, variables are identifiers
with leading capitals



structure of the input model. This leads us to the following general framework for translation:

PDDL parameter type name = OCLy, sort name
PDDL predicate = OCLj; predicate
PDDL operator name = OCLy operator name

The first association preserves the type hierarchy and translates it to an equivalent OCLy, sort
hierarchy. The consequential allocation of predicates to sorts, however, turns out to be the
fundamental problem faced in extracting OCLj information from PDDL. The requirement
to be able to identify all legal states of each primitive sort within the domain entails the
identification of a complete set of descriptions that can characterise any object of the sort
at any instance in time. Once this is done, re-writing the PDDL operators by extracting
the object transitions and the prevail clauses from the raw STRIPS operator is relatively
straightforward.

4.2 Inducing Substate Classes

Steps in the OCLj, method that are used to derive substate class definitions are as follows:

1. Identify the sorts that are dynamic and those that are static

2. For each dynamic sort, identify those predicates that are to be included in defining its
substate classes

3. For each dynamic sort, define its substate classes

For step 1, a sufficient condition for a sort s to be dynamic is that PDDL type s is described by
a property which can be changed by a PDDL operator. Those types that have no changeable
properties, but are referred to within a changing relation may or may not be mapped to a
dynamic sort — this choice will become clear after our discussion of step 2.

In step 2, a difficult issue arises in that given a predicate p(sl,s2,..,sn), what subset of
the OCL;, sorts sl,s2,..,sn should it be associated with, to describe that sorts’ substates
classes? In the method associated with OCLj it is proposed that normally each predicate
describe a single sort (although if the sort were not primitive the predicate would be used
in distinct primitive sorts). To illustrate this problem consider the PDDL predicate in, with
two arguments of type tool and container respectively. Both types are mapped over to OCLy,
dynamic sorts, and the question arises: should the predicate ”in” be used to describe the
state of an object of sort tool, the state of an object of sort container, or both? Though from
a logical point of view there is no more reason to say that the predicate in characterises a tool
than there is to say it characterises a container there are strong pragmatic reasons to classify
the predicate as belonging to only one of the objects referenced. If we allow predicates to
describe all its sorts’ states then there is a clear redundancy in our representation, in that we
record the same information twice. More serious than this, allowing a relational predicate to
characterise all referenced sorts introduces the frame problem in a particularly acute manner.
Recall that the right hand sides of OCL; transitions must fully characterise the resulting
substate of the dynamic object participating in the transition, without default persistence but
with a closed world assumption local to the predicates describing that sort. Then to record
the possible substates of the container we would have to consider the possible combinations
of the container being open, closed and locked along with all possible combinations of objects



such as the tools and wheels being either in or not in the container; this would lead to a
proliferation of object transitions and operators.

The discussion above shows that it is not practicable to let a predicate be used in the
substate descriptions of objects in every one of its argument sorts. Qur solution to this
frame problem is to try to follow the intuition in building an OCLj; model manually: let the
algorithm choose one single sort. This distinguished sort is said to own the predicate. Though
from a logical point of view this may seem arbitrary it coincides with intuition in the sense
that we would not naturally think of the action of opening the trunk as having a different
result depending on the trunk’s contents. In English an action verb is typically thought of
as characterising the subject of the sentence rather than the object. In this spirit we say the
the predicate in(wrench,trunk) describes the state of the wrench but not that of the trunk.

Given that we will only allow a predicate to characterise a single sort the choice of sort
could be made in a number of competing ways. We could try to allocate predicates to sorts in
a way to try and minimise the frame problem or to minimise the number of sorts that change
state in the actions concerned, or we could simply allocate them to the first mentioned object
in each predicate. Up to now our experiments have shown the third strategy gives satisfactory
results when the auto-generated OCLj; model has been compared to a hand crafted version.

Returning to step 1, this analysis determines the split of static and dynamic sorts: if some
dynamic predicate has the property that its first argument can contain object identifiers of
sort s, then s is a dynamic sort; otherwise, s will not be described by any dynamic predicates
and hence will be static.

4.3 Dealing with Negation

Defining substate classes (i.e. step 3) when manually creating an OCLj; model involves finding
a set of adequate substate class definitions. The aim is that for any expression in a substate
class definition, any instantiantion will be a valid substate, and any valid description of an
object is an instantiation of some expression in a substate class definition.

These classes can only be induced from the PDDL operators by examining the operator’s
effects, and, to some extent, using problem examples. For example, from the opening and
closing actions, we arrive at the following sketch of the substate classes of container:

- open(container),locked(container)
- open(container),— locked(container)
open(container),— locked(container)

The fourth possibility open(container),locked(container) is not achievable using the PDDL
operator set.

Negation in OCLy, is not represented explicitly, because of the local closed world assump-
tion used in substates. It may be the case, however, that a negative form (or opposite) is
required. We deal with this by potentially creating for each predicate a negative form, identi-
fied by prepending the predicate with not_. Though we start with the availability of all such
possible negations, not all are used in the final translation.



5 The Translation

5.1 Description of the Algorithm

To simplify the expression of the algorithm we use abbreviation and the dot notation to access
elements of PDDL or OCL;, Specifications. For example PDDL.actions refers to the actions of
the specification, OCLy.sscd[o.sort], refers to the OCLy, substate class definition for the sort
of object o (page 4) and ot.rhs without further prefix refers to the right hand side predicates
of an object transition of an OCL; action. In general we will also equate conjunctions with
sets.

algorithm toOCL-First-Pass

In Pt : PDDL-types, Pp : PDDL-predicates, Pa : PDDL-actions
Out OCL : OCLy-domain-specification

1. OCL.types := PDDL.types
2. OCL.predicates := PDDL.predicates
3. V a € PDDL.actions

4. oa := new OCL-action

5. Yo € controlling_objects(a.effect)

6. ot := new OCL-state-change-clause

7. ot.rhs = owned_predicates(o,a.effect)

8. ot.lhs = owned_predicates(o,a.precondition)

9. ot.rhs := ot.rhs U {p : ot.lhs | = (p € ot.rhs) A = (- p € ot.rhs)}
10. oa.nec := oa.nec U {ot}

11. OCL.sscd[o.sort] := OCL.sscd[o.sort] U {ot.rhs}

12. end_for

13. Vo € owning_objects(a.precondition) — owning_objects(a.effect)
14. se := new OCL-state-expression

15. se.exp := owned_predicates(o.precondition)

16. oa.prev := oa.prev U {se}

17.  end_for

18. end_for

19. end.

Figure 1: First Pass of the PDDL to OCL;, Translation Algorithm

The first pass of the translation algorithm deals with the initial identification of object
sorts with their PDDL counterparts the argument types. Candidate predicates are similarly
identified at this stage (lines 1,2 in Figure 1 ) Negations are recorded at this stage for predicates
if they are used in an action and are not generated automatically for all predicates.

The main part of the algorithm begins with the processing of the PDDL actions (lines 3 -
19). For each PDDL action we create an empty OCLj, action (line 4) and identify the variables
and types for each owning object (i.e first argument of a predicate) in the actions effect section,
and create a object transition (line 6). The right hand side of the transition clause is composed
of the conjunction of predicates owned by that object in the PDDL action’s effect (line 7).
The lefthand side is composed of the owned predicates in the actions precondition (line 8).
For the PDDL fetch action (page 2) there is only a single owning object variable ?x in the
effect clause therefore we produce the transition

(tool_wheel,X, [in(X,C)] => [have(X),not_in(X,C)])

In cases where a predicate of the owning object appears in the precondition of an operator



but its negation does not appear in the effect then we reason that the predicate must persist
and accordingly we add that predicate to the right hand side of the transition (line 9) We
now check the recorded substate class definition set for the owning object sort and add if
not already present the right-hand side of the transition as a new candidate substate (line
11). In the fetch example we add the state [have(X),not_in(X,C)] to the substate list of
the tool - wheel sort. The remaining processing of the action is to identify owning objects
referenced in the actions precondition but not the effect. For each such object variable we
create a substate expression clause from the conjunction of owned predicates to form part of
the resulting OCL;, operator’s Prevail section(13-17), which for the fetch operator produces
the expression:

(container,C, [open(C)])

To complete the first pass of the algorithm the domain problems given in the PDDL spec-
ification are translated. The strategy is similar to that adopted for operators but with the
problem initial state forming the basis for identifying more candidate object substate class
expressions (this part of the algorithm is not shown in the figure).

5.2 Translation Results

The first pass translation results are encouraging in that they are close to those produced
by hand translation from the same PDDL source. See samples for the Tyre World and the
“Gripper World” in the resources section of the web site in reference [15]. Of the thirteen
actions in the Tyre World two of the actions contained anomalies flagged up by the translation.
Eight of the translated actions contained unnecessary, though correct, negations on their right
hand sides and two actions had incomplete object transitions.

The translation at this stage not only forms a basis for hand completion but also has the
power to flag up potential problems and insecurities with the PDDL domain specification.
The most interesting of the anomalies uncovered in the Tyre World domain occurs with the
jack-down action which is translated as follows:

(:action jack-down
:parameters (?h - hub)
:precondition (not (on-ground ?h))
teffect (and (on-ground 7h) (have jack)))
operator (jack_down(H),

0,
[ (hub,H, [not_on_ground (H)]=>[on_ground(H)]),
(tool, jack, [1=>[have(jack)])] )

The transition for the jack indicates that it may be in any state prior to being possessed
as a result of jacking down the wheel. This is not adequate as the mechanic only possesses the
jack after execution of the action because it was used to jack-up the wheel in the first place.
The PDDL formulation works (operationally) because in the domain there is no alternative
way of getting the wheel off the ground (although we might have an alternative jack-up action,
such as use a block and tackle).

A second anomoly which arises with the encoding of the jack_down action is that we treat
[on_ground (H)] as a complete substate of the hub. From the auto-generated substate class
definition for the hub we see that either the predicate fastened(H) or unfastened(H) must also
apply to the the hub and this raises the following question: should it not be the case that we



should make it a precondition of the action that the hub has the wheel fastened to it prior to
jacking down the hub? In effect, in OCL}, terms the transition should be

(hub,H, [not_on_ground (H) ,fastened (H)]=>[on_ground (H) ,fastened(H)]),

5.3 Work Required to Complete the Translation

The primary issues to be addressed in a second pass of the translation algorithm, still to be
fully implemented are as follows:

Incomplete Object States

As OCLj, requires the right hand side of a transition to completely characterise the resulting
state we must inspect each such clause constructed so far to determine if there are miss-
ing predicates that in the PDDL representation would simply persist. An extension to the
algorithm could identify such omisions after the first pass translation. Consider two candi-
date substate class expressions z and y. If z contained a subset of the predicates of y, and
the negation of the predicates in y — —z cannot be inferred, then it would be reasonable to
conclude that z was an incomplete version of y.

Implicit agents

A problem with agents of actions being implicit in PDDL domain specifications arises when
translating to OCLp. The problem is amply illustrated by the following first pass translation
of the move rule from the Gripper domain where we have a robot that can move from a named
location to another named location.

operator (move(TO, FROM),
a,
[ (room,TO0, [1=>[at_robby(T0)]1),
(room,FROM, [at_robby (FROM) ]1=>[not_at_robby (FROM)])] )

The rooms TO and FROM are being classed as dynamic objects subject to change, but
we would more naturally want to say that it is the robot that has changed. In OCL; parlance
locations should be treated as static. To solve this problem we need to recode the at_robby
predicate and introduce an agent i.e. the robot. at(Agent,Location). If the agent has, as in
this case been implicitly encoded into the predicate then there will only be one such agent
and we can effectively introduce a new constant agent0 and a new type Agent.

Poorly Chosen Argument Ordering

Despite the decision to select the first place argument to denote the owning object of a
predicate there are situations where this should be rejected. The problem may arise if the
first argument of a relational predicate describes a property of an object referenced in a later
position. For example if the wheel status in the Tyre World was encoded in a predicate
status(condition,wheel) the translation of the inflate action would contain the following body:

(wheel ,Wheel, [have (Wheel)])
(condition,intact, [status(intact,Wheel)] => [])
(condition,inflated,[] => [status(inflated,Wheel)])
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The symmetry of the empty right and left hand clauses is the indicator that we have a
malcoded predicate which should be reordered. The result will eliminate the prevail clause
and result in the transition

(wheel,Wheel, [have (Wheel) ,condition(Wheel,intact)]=>
[have (Wheel) ,condition(Wheel,inflated)])

6 Discussion

It has been acknowledged since the modern inception of AI that the representation of knowl-
edge has a critical bearing on the performance of a problem solver. In planning especially,
there have been relatively few insights or research projects in this area - instead the planning
literature has tended to concentrate on the efficiency issues of planners, or the adequacy of
expression of their domain model languages. We see our ongoing work on the translation from
PDDL to OCLy, as promoting the debate on the relative merits of planning domain encodings,
and, in time, the matching up of appropriate planner technology to application domain.

Working with a domain modelling language such as OCLy, gives opportunities for higher
level domain validation with rich tool support that eases domain modelling. Our ‘first pass’
translator from PDDL to OCL}, has already given us access to a rich source of research exam-
ples written in PDDL to test OCLy, tools. More importantly, it has highlighted those issues
in representation such as use of negation, completeness/security of models, and construction
of object hierarchies that are fundamental to the creation of a planning domain model.

6.1 Related Work

The basic strategies of re-casting domain knowledge from a predicate base into an object-
centred base are not new and have been discussed in the literature for some period. An early
general discussion of the issues is to be found in reference [13]. OCL}, contrasts with previous
domain modelling languages for planning such as [18, 1] in its simplicity and clarity. On the
other hand, OCLj, is far less sophisticated (for a comparison of O-Plan’s TF and OCLj see
reference [10]).

Fox and Long in reference [6] show that the limitation of requiring arguments to be typed
in the PDDL specification is not fundamental to the translation. They demonstrate that type
information can be extracted from a set of PDDL operator schema only. Fox and Long’s
TIM uses the operator schemae to analyse the domain and produce types such that objects
belonging to them are identical up to naming. It therefore appears to produce a type structure
more appropriate to OCLy. Our future work will involve merging the translation algorithm
with the TIM engine into a tool that should produce a more adequate OCL; model.
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