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Abstract

This is an abridged version of chapters 6 and 7 in [Turner and McCluskey 94], which
were originally derived from [McCluskey 88]. It introduces the reader to Planning as
viewed from an Artificial Intelligence perspective. It also shows how a planning algorithm
can be formally specified and then transformed into executable code. Note that the spec-
ification was developed without the use of any tools, hence it may contain some syntactic
bugs. The planner implementation (and its derivatives) have been used frequently for
nearly ten years: in that time no semantic bugs have been found. Hence the application
could also be viewed as case study evidence supporting the power of formal techniques.

After introducing the reader to planning in Sections 1 and 2, in Section 3 we describe
an abstract specification of a planner, In Section 4 we introduce a design level solution
to planning in the form of a goal directed algorithm whose basic operation is to achieve
goals within a developing, partially ordered plan. We then progress to modelling the plan
as a VDM state, and then specify the ‘achieve’ operations on this state. In Sections 5,6
and 7 we show how the design specification may be implemented faithfully using Logic
Programming.

1. Introduction

One interesting application area in which formal specification can be used is that of Artificial Intelligence
(AI). This involves the creation of computer systems which perform tasks normally associated with human
intelligence, such as planning, reasoning, vision, natural language understanding and learning. AT applications
tend to be complex, leading to huge implementations. In some cases, scientists create theories and models
of intelligence with which to guide or base their computational models. With such large engineering tasks
an interesting question arises: how do scientists know that their computer models have been implemented
faithfully? One approach is to use a formal specification as a bridge that links the high level model at one
extreme, and the implementation at the other. That way, the model can be mapped to the specification, which
can then itself be prototyped, or used as a contract with respect to which the correctness of the implementation
is checked. An easy mistake to make, especially in complex application areas such as those in Al is to assume
that if the problem is ill-defined, formal specification techniques are not applicable. “Such and such an area
is not capable of being fully captured, therefore formal specification is not appropriate” one might say. This
misses the point: if a complex program is to be written to simulate an un-fathomable application then the
program itself can (and should) be formally specified, even though the area it is approximating cannot.



In the first part of this paper we will develop a VDM specification of the main procedure in a planning
program, that is a program which generates plans automatically. Specifically, our design level specification in
section 4 captures the goal achievement procedure in a “Constraint Posting Non-Linear Conjunctive Planner”
(the reader is referred to [Chapman 87] for the background on this). In the second part of the paper we will
prototype this specification using Prolog. As with any substantial case study, however, the reader must become
familiar with the application area, and we devote several pages to giving a simple introduction to planning.
Those who need more information on automatic planning could consult textbooks on Artificial Intelligence’.

2. Automatic Planning

Planning is what we do when we assemble orderings of actions to achieve goals. These orderings are temporal
- they involve the concept of time. The idea of using a partial ordering to represent temporal relations
between actions is quite common. As well as actions, we must represent objects that are being acted on, and
properties and relationships between these objects. In the model developed here, we will often refer to the
actions, objects and relationships which are relevant the planning world or simply the world for short. Going
on holiday requires a simple form of planning - actions are packing suitcases, going to the travel agent, going
to the airport, booking a hotel and so on. Orderings include ‘obtain tickets before flying’ and ‘pack suitcases
before going to the airport’. Objects related to the actions are travel tickets, passports, currency, people,
planes, baggage and so on, and these objects may have a myriad of important properties and relationships.

Computer programming is another type of planning. Typical actions are programming commands such as
assignment, procedure call and iteration; in most programming languages, commands are applied (or ezecuted)
sequentially, so here we have a total ordering of actions in time. For example, the code fragment:

z2=0;while (2 +1)* <z doz:=241

means apply action z: = 0 before the iterative action while (z + 1)2 < z do z: = z + 1. Objects are modelled
by data types, and relations between objects are the relational operators of the data types used. Goals may
be posed by stating conditions on output data. Here the goals may be given by a program specification, and
in VDM these would be the post-conditions of operators. The goal of our program example is:

(Z2<z)A(z < (z+1)?)

which is the post-condition of a function to return the integer square root. The form of planning we will
model here is called generative because the planner proceeds to work out a complete plan to achieve some
given goals, assuming it has a fixed, correct representation of the planning world. Where the interaction of
a plan execution mechanism with a largely unknown environment is the most important factor, a different
kind of planning, call reactive planning, may be called for. Our model will be restricted by a number of other
simplifying assumptions, to make the case study small enough to fit into a paper. As a working example we
use a world often referred to in the planning literature as the blocks world (see figure 6.1(a)). Here a robot is
given a goal in the form of an arrangement of stacked blocks, and has to work out a plan to achieve that goal.
The plan must consist of actions to be applied by a robot arm (a gripper).

2.1 Objects in the Blocks World

Objects in the blocks world are the blocks, the table and the gripper. Typical goals involve block stacking,
using the gripper. We express properties and relationships in planning worlds in the form of literals, such as
‘block a is on b’ and ‘block d has a clear top’. The imaginary world given in figure 6.1(a) could be represented
by asserting the following literals, which we will refer to as state S1:

‘block a is on block b’, ‘block ¢ is on the table’, ‘block b is on the table’,
‘block d is on the table’, ‘block d has a clear top’, ‘block a has a clear top’,
‘block ¢ has a clear top’, and ‘the gripper is free’.

'Refer to [Rich and Knight 91] for a good introduction to Planning.
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Figure 6.1: The blocks world (state S1)

A set of literals that is assumed to capture a snapshot of the world adequately is called a state. To keep the
representation of a state simple, we will insist that each literal making up a state asserts a single, positive fact
about the world. Negative literals such as:

‘block b has not got a clear top’

can be represented implicitly: we assume that whatever is not asserted is false: hence, if it is not asserted that
‘block b has a clear top’, then we assume it is not the case.

Certain facts such as:
‘the table always has space for a block’

can be also be represented implicitly, within the actions that model block stacking. The assumed infinite size
of the table, for example, can be represented by assuming that a block can always be put down onto it. Note
also that the choice of which literals to use depends totally on the user and the sort of tasks that the user has
in mind for the planner. For instance we have chosen not to record any shape information about the blocks,
or the fact that they are all the same size.

2.2 Actions in the Blocks World

We choose to model four types of action in the blocks world, all performed by the robot gripper: grasping a
block, picking up a block, putting a block down onto another, and putting a block down onto the table. Our
planner will embody the assumption that the effect of actions changing states can be stated by defining actions
via pre-conditions and post-conditions, in a similar form to a VDM operation. An action which models the
gripper getting hold of block a is defined as follows:

pre-conditions - literals that must be true before the action can be applied:
‘block a has a clear top’, ‘the gripper is free’

post-conditions -

literals made true by the effect of the action:

‘gripper grasps block a’

literals made false by the effect of the action:

‘block a has a clear top’, ‘the gripper is free’

The pre-conditions are assumed to be those facts needed to be true in a state for the action to be applicable. So
before this action can be exected on a state, the literals ‘block a has a clear top’ and ‘the gripper is free’ must
be asserted in the state description. The post-condition of an action is traditionally split into two separate
structures: the add-set, holding those literals made true by the effect of the action, and the delete-set, holding



only those literals made false by the effect of the action. Complete with a name, grasp a, a shortened form of
this action is then (we assume a, b, ¢ and d denote blocks from now on):

name: grasp a

pre-conditions: ‘a has a clear top’, ‘gripper is free’ ;
add-set: ‘gripper grasps a’ ;

delete-set: ‘a has a clear top’, ‘gripper is free’ ;

In the same way we can model lifting up block a from another block, lifting up block a from the table, putting
a down onto another block, and putting a down onto the table:

name: liftup a from b ;

pre-conditions: ‘gripper grasps a’, ‘a is on b’ ;
add-set: ‘a lifted up’, ‘b has a clear top’ ;
delete-set: ‘a is on b’;

name: liftup a from table ;

pre-conditions: ‘gripper grasps a’, ‘a is on table’ ;
add-set: ‘a lifted up’ ;

delete-set: ‘a is on table’;

name: putdown a onto ¢

pre-conditions: ‘a lifted up’, ‘c has a clear top’ ;

add-set: ‘a is on ¢’ ‘gripper is free’, ‘a has a clear top’ ;
delete-set: ‘a lifted up’, ‘gripper grasps a’, ‘c has a clear top’ ;

name: putdown a onto table;

pre-conditions: ‘a lifted up’ ;

add-set: ‘e is on table ’, ’gripper is free’, ‘a has a clear top ;
delete-set: ‘a lifted up’, ‘gripper grasps a’ ;

The actions moving the other blocks b, ¢, d can all be written in exactly the same form, giving a total of 36
action instances (4 grasp’s, 4 liftup’s from the table, 4 putdown’s onto the table, 12 putdown’s between blocks
and 12 liftup’s between blocks). In fact, we could reduce the action set to just 5 actions if we used parameters
for the block names a, b, ¢, d (see Exercise 2 no. 2) but this would over-complicate the VDM specification we
are about to develop.

2.3 Action Application

Next, we define how actions change states. An action can be applied to a state if its pre-conditions are literals
contained in that state. For example, grasp a’s pre-conditions are contained in state A, so grasp a can be
applied to it. The effect of applying an action to a state is that any literals in the action’s delete-set are deleted
from the old state, and all the literals in the action’s add-set are ‘unioned’ to the result, generating a new
state. In summary, applying action A to state S, denoted apply(4, S), is given by:

apply(A, S) = (S \ A’s delete-set) UA’s add-set

Important note: In the rest of the paper the name of an action will often be identified with the full action
representation that it stands for. This is a shorthand device, because when we refer to actions, we do not
want to keep repeating their full representation, including their pre- and post-conditions. For example, when
we write “apply action grasp a”, we actually mean apply the action named grasp a.

Examples 1

1. Applying grasp a to state S1 results in a new state, called state S2, as follows (see figure 6.1(b)):
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Figure 6.1(c): The blocks world (state S3)



state 52

= apply grasp a to state S1,

= (state S1\ delete-set of grasp a) U add-set of grasp a

= ( state S1\ { ‘a has a clear top’, ‘gripper is free’ }) U{ ‘gripper grasps o’ },
= {‘ais on b’, ‘c is on the table’, ‘b is on the table’,

‘d is on the table’, ‘d has a clear top’, ‘gripper grasps a’ ‘c has a clear top’},

Note that grasp a is applicable to state S1 because its pre-conditions (‘a has a clear top’, ‘gripper is free’) are
contained in S1.

2. The pre-conditions of liftup a from b (‘gripper grasps a’, ‘a is on b’) are contained in state S2 so we may
apply this action to it. Calling the new state S3 (see figure 6.1(c)), we have:

state S3

= apply liftup a from b to state S2

= (state S2\ delete-set of liftup a from b ) U add-set of liftup a from b

= ( state S2\ { ‘a is on b’ }) U{ ‘a lifted up’, ‘b has a clear top’ },

= { ‘a lifted up’, ‘b has a clear top’, ‘c is on the table’, ‘b is on the table’,
‘d is on the table’, ‘d has a clear top’, ‘gripper grasps a’ ‘c has a clear top’}.

Exercise 1

Apply the action putdown a onto ¢ to state S3 to obtain a new state, 54.

2.4 Plans

A solution plan to a planning problem is an ordering of actions which achieves a set of goals, and the ordering
may be total or partial. A plan is executed by applying each of its individual actions in turn. Planning
problems can be posed by describing:

e an initial state: this is the state from which the solution must start execution,

e a set of goal literals: these are the literals which must be achieved. A goal literal is said to be achieved
by an action sequence if it is contained in the final state after the actions have all been applied ( a more
general definition of goal achievement is given in section 4).

To be able to solve a planning problem, a planner must have access to a set of actions. A subset of these
actions will be used to form the solution. A solution to a planning problem is simply a correct plan, defined
as follows:

A correct plan is a complete plan which when applied sequentially to the initial state produces a state which
contains all the goal literals.

A complete plan is a total order of actions which can be applied sequentially to an initial state to produce a
final state.

Note that the correctness of a plan can only be checked if we have a set of goals in mind. These definitions
generalise easily to partially ordered plans, since a partially ordered plan can be thought of as specifying a set
of totally ordered plans. Hence we have:

A partially ordered plan is complete (correct) if all the totally ordered plans it specifies are complete (correct).

This model of planning sidesteps many considerations such as the use of resources and the passage of time
intervals. For example, in exercise 6.2 no. 1 we model the Painting World. With our restricted model, it is
impossible to consider such questions as “have we enough paint to cover the wall?” and “has the first coat of



paint dried?”. It would be interesting to extend the model to cope with this kind of reasoning, but to keep
the case study to a reasonable size we have to limit the planner’s application.

Examples 2

1. Consider ‘going on a foreign holiday’ as a planning scenario. A plan with the goal ‘Holiday in Spain’ which
got us to an airport without bringing our passport would be an incomplete plan. The pre-condition of one
of the actions, going through passport control, would not be met. Similarly, a plan which was complete, but
landed us in Bermuda rather than Torremolinos would be an incorrect (although perhaps more desirable) plan.

2. Consider the sequence of actions:
grasp a, liftup a from b, putdown a on c

Examples 1 and Exercise 1 show that each of these three actions can be applied in sequence starting from
state S1, hence it is a complete plan. If the goal was { ‘a is on ¢’ ‘b has a clear top’ }, then the plan is correct
with respect to this goal. This sequence is not correct with respect to goals { ‘c is on d’, ‘b has a clear top’ },
because it does not achieve one of the literals in the goal set.

3. The sequence:
grasp a, putdown a onto ¢, liftup b from table

is not a complete plan starting at state S1, because putdown a onto ¢ cannot be applied after grasp a, according
to our definition of action application. After grasp a has been applied, the pre-condition ‘a lifted up’ of putdown
a onto c is not in the resulting state S2.

Exercises 2

1. We will capture a simple Painting World in our planning model. As a start, we model the operator
paint_ceiling as follows:

name: paint_ceiling

pre-conditions: ‘have ladder’, ‘ladder functional’, ‘have paint’
add-set: ‘ceiling painted’

delete-set: empty

Within our simplification of reality paint_ceiling does not delete any facts, and we state this as ‘empty’. The
other four actions are:

name: paint_wall

pre-conditions: ‘have paint’, ‘celing painted’
add-set: ‘wall painted’

delete-set: empty

name: paint_ladder

pre-conditions: ‘have ladder’, ‘have paint’
add-set: ‘ladder painted’

delete-set: ‘ladder functional’

name: get_paint

pre-conditions: ‘have credit card’
add-set: ‘have paint’

delete-set: empty

name: get_ladder
pre-conditions: ‘have credit card’, ‘own large car’



figure 6.1(d): A Partial Ordering of Actions in the Painting World

add-set: ‘have ladder’, ‘ladder functional’
delete-set: empty

From initial state:

{ ‘have credit card’, ‘own large car’ }

we show that the plan illustrated in figure 6.1(d) is correct, with respect to the goal set:
{‘ladder painted’, ‘ceiling painted’, ¢ wall painted’ }.

Note: To show correctness of the plan, you should show that every totally ordered plan conforming to the
partial order, of which there are four, is correct.

2. Generalise the blocks world action definitions so that you may use parameters, and express actions such as
putdown X onto Y and liftup Z from the table. Are there any special problems arising when parameters are
introduced? (for example, consider the case where X = Y in the definition of putdown X onto Y)

3. An Abstract Specification of the Planner

The overall requirement of our planning program is to input a problem posed correctly in its input language,
and output a correct plan. How are we to specify such a program? We will choose two levels on which to
pose the specification. The first specification, given in section 3.2, is more abstract, implicit and a good deal
shorter than the more concrete specification developed in section 4. It relies on a formalisation of the input
and captures the idea that the output must be an ordering of actions which is correct with respect to the input
goal set. The second level of specification incorporates a goal directed solution method, and is concrete enough
for us to prototype later in the paper. We start, however, by creating a model of the input language to the
planning program, which will be used for both levels. This input will contain the actions, the initial state, and
the goal.

3.1 A VDM Representation of Planning Problems

All components of our simplified planning system have as their basis the literal, so we shall start by modelling
it. Order is important in a literal (for example ‘block a is on block b’ is not the same as ‘block b is on block



a’), and it can be of variable length, hence we will use a sequence of tokens or identifiers to represent it.

Literal = Token™

Furthermore, if the literal contains a relation name or property name, we let it be the head element in the
sequence, and the objects related by it, the tail. For example, in state S1, ‘on’ is a relation name and ‘clear’
a property name.

Both a state and a goal can be modelled as sets of Literals. In both cases ordering of Literals is not assumed
to be important, and there is no limit to the size of goals and states. The Set type is therefore chosen?:

State = Literal-set

Goal = Literal-set

Actions have a fixed number of different components (a name, a pre-condition and so on) which leads us to
choose a model using a composite:

Action :: name : Literal
pre : Literal-set
add : Literal-set
del : Literal-set

Finally, we put the three components together in a composite type

Planning_Problem :: AS : Action-set
I : State
G : Goal

Here the component variables represent:

e the set of actions
e the initial state
e the goal expression

Examples 3

1. State S1 is explicitly represented in VDM as:

{ [on, a,b ], [on, ¢, table], [on, b, table], [on, d, table],
[clear, d ], [clear, a], [clear, c ], [free, gripper] }

2. The goal set in Exercise 2 no. 1 is represented in VDM as:
{ [painted, ladder], [painted, ceiling], [painted, wall] }.
3. Action grasp a is represented in VDM by the expression:

mk-Action([grasp, a],
{[clear, a], [free, gripper]},
{lgrasp, al},

{[clear, a), [free, gripper]})

2Note that our interpretation of Goal and State are different. A state is interpreted with the implicit
assumption that anything not asserted in it is assumed to be false. A goal, on the other hand, specifies a set
of states - exactly all those which contain all the goal’s literals.



4. In the Painting World, as in the Blocks World, when we translate the literals into VDM, we use the
convention that the properties of objects head the literal sequence. Action paint ceiling is represented by

mk-Action([paint, ceiling],
{[have, ladder], [functional, ladder], [have, paint]},
{[painted, ceiling]},

{H

Exercises 3

Using the explicit VDM representations of sequences, sets and composites, represent the following:
1. states S2 and S3;

2. all the Blocks World actions;

3. the planning problem consisting of the actions in 2., the initial state S1 and the goal expression:

{ [on, a, ], [clear, a] }

3.2 Invariants for the Planning Problem

Many invariants can be captured to ensure the validity of the planning problem. We will state several here, in
terms of problem components I, G and AS. The reader is invited to develop the model further in exercise 6.2.

(1) ‘every literal in the goal set appears in either the initial state or in some action’s add-set’. This is required
because the only way that literals can be added to the initial state in our model is through the application of
actions. If it were not satisfied, then the goal set would not be achievable. The condition formalises to:

VieG-(leIv3IAeAS-le Aadd)

(2) An invariant that invalidates trivial problems is: ‘the goal set is not a subset of the initial state’, captured
by:

~(GCI

(3) Actions need to be restricted to disallow futile ones: ‘No action can both add and delete the same literal’.
This formalises to:

VA€ AS - —~(3p-p € A.add N\ p € A.del)
Putting these together we obtain the data type:

Planning_Problem :: AS : Action-set
I : State
G : Goal

inv mk- Planning_Problem(G, I, AS) &
VieG-(leIviAe AS-l€ A.add) A
-(GCI)A
VA€ AS-—~(Tp-p € Aadd A p € A.del)

Exercises 4

1. Check that your answer to Exercise 3, no. 3, satisfies the data type invariant.

10



2. Formalise the condition: ‘every action has at least one literal in its add-set’.
3. Formalise the condition: ‘every pre-condition literal is either in the initial state or in some action’s add-set’.

The conditions in questions 2. and 3. may well be worthy of inclusion in the invariant. If 2. were not satisfied
by an action then one might ask why that action were included (because it could not help in achieving a goal).
If 3. were not satisfied by an action, that action would not be able to be used in a plan, as its pre-conditions
could never be achieved in (or added to) a state. On the other hand we may not want to be too strict, because
we may pose different problems by changing the initial state and the goal, while keeping the action set fixed.

3.3 A First Specification of the Planner

In this section we build up an abstract specification using functions as building blocks. The planner itself
is implicitly defined via an operation which inputs a Planning Problem and outputs a solution in the form
of an ordering of actions. No notion of VDM state is required, because of the very abstract nature of the
specification.

We start by formalising the application of actions in VDM, with the following function which applies an action
to a state:

apply : Action x State — State

The definition of apply immediately follows from the definition given in section 2.3. To make the function
total, however, we introduce the idea of an ‘error’ state, and regard this as the empty set of literals. Applying
an action to an error state should also result in an error state:

apply : Action x State — State
apply (a,5) &
if a.pre C s
then (s\ a.del) U a.add
else {}

A planning problem is solved by the application of a sequence of action applications, and so we need to
formalise the idea of the application of an action sequence to a state. This is done in terms of apply: the
function apply_seq applies the head of an action sequence to obtain an advanced state, and recursively calls
itself with the advanced state and with the tail of the action sequence:

apply_seq : Action™ X State — State

apply_seq (as, s) A
if as =[]
then s
else apply_seq(tl as, apply(hd as, s))

Note:

e if the action sequence is empty, the state is returned unchanged.

e if as is an incomplete plan, then the definition of apply ensures that the function evaluates to the empty
set, signifying an error state.

Next the notion of completeness of a plan is formalised, again using apply within a recursive function.
complete(as, s) returns true if and only if every action in the sequence as is applicable, starting with state s.
The function is boolean valued:

complete : Action™ x State - B

11



If the action sequence is empty it is considered complete, otherwise it is complete if
(a) the pre-conditions of the head of the sequence are contained in the current state, and

(b) the tail of the sequence is complete when applied to the advanced state obtained by applying the head of
the sequence to the current state.

This is summed up by the VDM function:

complete : Action™ x State — B

complete (as, s) 2
if as =[]
then true
else (hd as).pre C s A complete(tl as, apply(hd as, s))

Using the functions complete and apply_seq, an implicit specification of a planner can be written. Essentially,
the specification states that for an input Planning_Problem, a correct plan in the shape of a sequence of actions
is output:

PLANNER (pp : Planning_Problem) soln : Action™
pre true

post elems soln C pp.AS A
complete(soln, pp.I)) A
pp.G C apply_seq(soln, pp.I)

The post-condition asserts that

e only actions defined in the Planning_Problem are allowed in the action sequence;
e the plan is complete

e execution of the plan outputs a state which contains the goal

Hence the final two conjunctions formalise the correctness criterion given in section 2. Note that PLANNER is
not a function as there may be many plans that satisfy this specification, given a particular planning problem.
Even if we added an extra constraint to the post condition which insists on a minimum length solution, there
still may be more than one correct plan.

Exercises 5

If the first three exercises, let Al be the action called [grasp, a], A2 the action called [liftup, a, b], and A3 the
action called [putdown, a, c].

1. Check that the expression:

complete([Al, A2, A3], S1)

evaluates to true.

2. Evaluate the expression:

apply_seq([A1, A2, A3], S1)

using the formal definition of apply_seq, verefying that it coincides with our informal notion of section 2.

3. Assume PLANNER has been input with the planning problem of Exercise 3, no. 3. Using the results of

exercises 1. and 2. above, deduce that

12



soln = [Al, A2, A3]
makes the post-condition of PLANNER true.

4. Generalise the specification of PLANNER to one which outputs a partially ordered set of actions as a
solution. Hint: apply must be re-defined to apply a set of action sequences and return a set of states.

5. Consider the following planning problem, where p and q are literals (this example is due to Yogesh Naik):

mk-Planning_Problem(

?rék-ACtion([bill], {[p1}, {lal}, {[p]}), mk-Action([ben], {[4]}, {[p]}, {la] )},
Y28

{r,q})

It has two actions, called bill and ben; its initial state is simply the set of one literal, p, and its goal is the set
of two literals, p and ¢. Verify that this problem satisfies Planning_Problem’s invariant. With this problem
as input, can you find an action sequence which satisfies PLANNER’s post-condition? What conclusions can
you draw about the Satisfiability of PLANNER? In fact, this exercise shows that we can pose problems in the
planning language for which there are no solution - planning is hard!.

4. A Design Level Specification

In this section we construct a more concrete specification for the planner, which incorporates a goal directed
procedure for solving planning problems. Most non-trivial problems can be usefully specified at one or more
‘design levels’, in which commitments to particular solution techniques and data structures are progressively
made. After having completed a more detailed design level, it is up to the designer to check it is adequate with
respect to the more abstract level. VDM encompasses a well developed process called reification, in which
operators and data types are re-expressed at a more detailed level after their initial specification, and the
detailed level is checked for adequacy using a retrieve function. Showing how the design level of the planner
described in this section conforms to the abstract level given above is beyond the scope of this book, and is
left as a project for the interested reader.

The specification, certainly towards the end, becomes rather complicated and may be difficult for some readers.
In this case, the reader is encouraged to move on to the next section, where the prototyping of the planner
may shed more light on its specification, or to consult appendix 3, where sample inputs and outputs of the
planner are given, as well as its implementation.

4.1 A Technique for Solving Planning Problems

The more concrete specification commits our planner to a particular solution method in which the planning
program generates plans in a systematic manner and then terminates when it finds a plan that is correct. The
solution method runs as follows:

e start with an initial plan which only contains the initial state and goal set, viewed as special actions;
e incrementally achieve goal literals by:
— identifying an action already in the plan which achieves the goal literal; or

— adding a new action to the plan to achieve the goal literal (in which case the new action’s pre-
conditions themselves must be achieved).

When an action is added to the plan, rather than storing it in a sequence, it is stored within a partially ordered
set of actions, such as the action set in the Painting World example.
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START: Initialise the Planning Problem
by generating the initial plan,
and put the initial plan in a Store;

LOOP:
1. --Choose and remove a plan ‘pp’ from the Store;
2. --Choose a goal instance Gi from ‘pp’;
3. --Generate plans to achieve Gi in ‘pp’ in all ways possible;

4. --Add all new plans generated by step 3 to the Store

UNTIL there exists a plan in Store which has no unachieved goal instances.

figure 6.2: The Top Level Loop of a Naive Planning Algorithm

The planner’s job is to find a plan in which all literals in the goal set and in every action’s pre-condition
are achieved, in the sense that the final solution is complete (the pre-conditions of each action are met as
they are applied) and correct (the final state produced contains the goal set). This means that an action’s
pre-conditions must be achieved at an earlier time than the goal set, and we will identify this time with the
position of the action in the plan. The combination of a goal literal with a position in the temporal ordering
at which it must be achieved we call a goal instance.

In figure 6.2 we present a top level algorithm of a planning program. If we assume that the choices in steps
1. and 2. are made randomly, then the heart of this algorithm is step 3. - generating new plans which
achieve previously unachieved goal instances. The specification developed here will consist of the initialisation
operation carried out before the loop, and two operations which perform goal achievement necessary for step
3. The terminating condition of the loop is dependent on a plan being found in Store which has no unachieved
goal instances. In fact, the specification of the goal achievement operations ensures that once a plan is found
with an empty set of unsolved goal instances, that plan will contain a solution as defined by our abstract
specification in section 3.

4.2 An Introduction to Goal Achievement in Planning

A goal instance is any pre-condition literal and action pairing in a plan. To use a concrete example, consider
figure 6.2(b).

We know ‘have ladder’ is a pre-condition of action paint ceiling, hence the pair ("have ladder’, paint ceiling) is
a goal instance in the plan represented by this figure. One of the goal literals of the Painting World is ‘ladder
painted’, so the pair (‘ladder painted’, goal) is another goal instance. In this example, goal is considered a
special kind of action, whose pre-conditions are the literals in the goal set. The same can be done for the
initial state - it can be considered an action which has an add-set containg all the literals in the initial state.

For a more abstract example, refer to figure 6.3. It is a bounded poset representing an abstract plan containing
some imaginary actions which we call C1, C2, C3, C4, A and O. Assume ‘p’ in the diagram is a literal contained
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figure 5.4: The Painting World plan: A Partial Order with Bounds

in the pre-conditions of O; then the pair (p, O) is an example of a goal instance.
Now we can give a full definition of goal achievement:

A goal instance (p, O) is achieved in a plan if some action X is constrained to be necessarily before O, X
contains p in its add-set, and no action that could possibly occur between X and O contains p in its delete-set.
In this case X is said to be the achiever of p at O

We can define a complete plan in terms of goal achievement: a complete plan is a bounded ordering of actions
in which every goal instance is achieved by some action (compare this definition with our earlier definition of
completeness for sequential plans in section 3). A complete plan in this sense is also correct because a subset
of these goal instances are those taken from the goal set and combined with dummy action goal. We will
finish this section with several examples and exercises, so that the reader may get an intuitive feel for our goal
achievement definition.

Examples 4

1. The goal instance (‘ladder functional’, paint ceiling) is achieved in the Painting World plan of figure 5.4, by
action get ladder. We can check the conditions are true by our definition of goal achievement:

e get ladder is necessarily before paint ceiling, as there is a path of directed arcs (in this case just one)
from the former to the latter;

e get ladder contains ‘ladder functional’ in its add-set (see Exercise 2);

e the only action that can possibly occur between get ladder and

paint ceiling is get paint. It does not contain ‘ladder functional’ is its delete-set, and so this condition
is met.

Note that if paint ladder was not ordered to be after paint ceiling, then goal achievement would not be
necessarily true, because paint ladder contains ‘ladder functional’ is its delete-set.
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2. The goal instance (‘have paint’, paint wall) is achieved by action get paint. The conditions are true as
follows: get paint is necessarily before paint wall; get paint contains ‘have paint’ in its add-set (see Exercise 2);
none of the three actions that could be between get paint and paint wall contain ‘have paint’ in their delete-set.

3. In figure 6.3, action instance A could be the achiever of goal instance (p, O) if

e A contains p in its add-set
e (1 does not contain p in its delete-set.

e Either C4 does not contain p in its delete-set OR an arc is added from C4 to A to constrain C4 to be
before the achiever, A.

4. C4 could be the achiever of goal instance (p, O) if all these conditions are made true:

e An arc was added from C4 to O, to ensure C'4 was executed before O in an application of the completed
plan;

e (4 contains p in its add-set;

e Either C'1 does not contain p in its delete-set OR an arc is added from C1 to C4 to constrain C1 to
be before the achiever, C4.

e Either A does not contain p in its delete-set OR an arc is added from A to C4 to constrain A to be
before the achiever, C4.

Actions that could not possibly be used to achieve p are those that do not contain p in their add-sets, those
which are necessarily after O (for example C2), and those which have an action in between them and the goal
instance which deletes p.

Of course, another way to achieve a pre-condition literal p is to add another action to the plan to achieve it.
In this case we must go through the same procedure to make sure p is not ‘undone’. Note that although any
further temporal constraints on the plan (that is additional arcs) will not invalidate the achievement of p, the
addition of an action to achieve some other goal instance may well undo its achievement (we return to this
point later).

Exercises 6

1. Using the example plan in figure 6.3, state the conditions under which the following operators achieve (p,
0):

(a) C1
(b) C3
(c) inst

2. Assume another action Y is added to the plan in figure 6.3, and constrained to be before O in the new
plan (see figure 6.4). State the conditions under which Y achieves (p,0).

3. (This follows on from question 2.). Assume the conditions of Y being an achiever for p in question 2. are
true. Now add extra temporal constraints to figure 6.4, for example an arc from Y to C1, and another from
C4 to 0. Is Y still an achiever for p? Form an argument showing that for any X which is an achiever for
a literal p at action instance O, then no legal additions of temporal constraints (that is arcs) will affect X’s
achievement of p.

4. List all the goal instances in the Painting World plan of figure 5.4. Convince yourself, using our definition
of goal achievement, that the plan contains an achiever for each one.
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| A | —>— | C1 | -->-—-| 0 |->-

figure 6.3: An abstract plan (C1,C2,C3,C4,0,A are arbitrary action
identifiers, init and goal identify the initial state and goal
conditions viewed as special actions)

- ->-- | Y |-->---—-

figure 6.4: A new abstract plan
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4.3 Modelling the VDM State

The VDM state will represent a developing plan, as discussed above. The developing plan consists of some
actions, a temporal ordering on those actions, some outstanding goal instances to be achieved, and some goal
instances already achieved. The ‘achieve’ operations defined later will change the state by achieving one of the
unsolved goal instances either through the addition of an action to the plan, or through an existing action in
the plan.

Although it will also contain the planning problem itself, we will call the whole system state a Partial_Plan,
and give it five state components named pp, Os, Ts, Ps, As as follows:

state Partial_Plan of
pp : Planning_Problem
Os : Action_instances
Ts : Bounded_Poset
As : Goal_instances
Ps : Goal_instances
end

Actions, states and the structure of Planning_Problem were all defined in section 3.

4.3.1 The Action_instances Data Structure

This component holds the actions occurring in a plan - called the action instances. It is necessary to allocate
each action instance a unique identifier as it is added to the developing plan because the same action may
occur more than once in the plan. In this case Os needs to be represented using a mapping from identifiers to
actions, and an invariant is used to constrain the range of Os to be members of pp.AS (recall from 6.3 that AS
represents the component of Planning_Problem in which the action definitions are held). This map captures
the constraint that no identifier can point to more than one action, but allows one action to be pointed to by
more than one identifier.

For the sake of uniformity, the initial state and the goal set will be modelled as special actions, occurring in
every plan. More importantly, they will become the lower and upper bounds, respectively, of the bounded
poset in T's below. These special actions are formed explicitly as:

mk-Action([init],{ }, pp.I1,{})
mk-Action([goal], pp.G,{},{})

and will be identified by init and goal respectively. The translation of these two literal sets into the actions
above is intuitively sound: the initial state needs no pre-conditions, does not delete any literals but has the effect
of ‘adding’ all its literals; the goal does not have any post-condition effects, but to achieve its pre-conditions
a plan must have asserted all the literals in the goal.

The type of Os is Action_instances, and is defined as follows:

Action_id = Token

Action_instances = Action_id — Action

4.3.2 The Bounded_Poset Data Structure

T's holds a strong partial order relation on the action identifiers in Os, bounded by init and goal which identify
the special initial state and goal actions. A poset specification developed is used below to provide the temporal
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structure for the plan ( for the reader new to formal methods, this specification is introdced in chapter 5 of
?The Construction of Formal Specifications” by Turner and McCluskey, published in 1994 by McGraw-Hill):

Arc :: source : Action_id
dest : Action_id

Bounded_Poset = Arc-set

inv mk-Bounded_Poset(p) D Yz, y € get_nodes(p) -

~ (before(z, y, p) A before(y, z, p)) A
z # init = before(init, z,p) A
z # goal = before(z, goal, p)

The associated functions change are:

get_nodes : Arc-set — Action _id

get_nodes (p) &
{a.source | a € p.arcs} U {a.dest | a € p.arcs}

before : Action_id x Action_id X Arc-set — B

before (z, 2, p) &
mk-Arc(z,2) €Ep V
Iy € get_nodes(p) - before(z, y,p) A before(y, 2z, p)

possibly_before : Action_id x Action_id X Arc-set —» B

possibly_before (z,y, p) A
z # y A - before(y, z, p)

Likewise, the three operations init_poset, add_node and make_node are easily adapted to fit this application:

init_poset : — Bounded_Poset

init_poset () &
{mk-before(init, goal)}

add_node : Action_id x Bounded_Poset — Bounded_Poset

add_node (u,p) &
p U {mk-Arc(init, u), mk-Arc(u, goal) }

make _before : Action_id x Action_id x Bounded_Poset — Bounded_Poset

make_before (u, v, p) A
if possibly_before(u,v,p) A {u, v} C get_nodes(p)
then p U {mk-Arc(u, v)}

4.3.3 The Goal_instances Data Structure

Ps represents a collection of unsolved goal instances, those which are still to be achieved by some action. A
goal instance is a relation between goal literals and action identifiers, therefore we represent the set of Ps as
a set of ordered pairs as follows:
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Goal_instance :: gl : Literal
ai : Action_id

Goal_instances = Goal_instance-set

Action instances that are added to the plan to achieve the goal instances in Ps may themselves have pre-
condition literals: these will then be added to Ps as goal instances. At initialisation, Ps will record the goal
set pp.G, and will take the form:

{mk-Goal_instance(g1, goal), ..., mk- Goal _instance(gn, goal) }
where pp.G = {g1, ..., gn}. This can be written more concisely using set comprehension:
{mk-Goal_instance(g, goal) | g € pp.G}

Likewise, As holds a collection of achieved goal instances. This set will be initially empty, but each execution
of the ‘achieve’ operations defined below will result in a literal being achieved at some point in the plan, and
so this goal instance will be added to As.

4.4 The State Invariant

Some possible states of the Partial_Plan structure we have defined are clearly not valid, and our discussion
has already thrown up some useful invariants. We first start by listing the easier ones:

(1) Os always contains the two special actions formed from the initial state and goal literals.

(2) The range of the map Os (the Action-set) is a subset of actions posed in the Planning_Problem augmented
with the init and goal actions.

(3) The nodes in T's and the identifiers from Os are the same: this ensures that Ts is a partial order on all
(and only) those action instances in Os.

(4) Ps and As are disjoint: no goal instance can be both achieved and not achieved.

(5) All the pre-conditions of the action instances in Os are recorded as goal instances in either As or Ps (which
means they have been achieved or are not achieved).

Finally we express the most important invariant of a plan:

(6) Every goal instance mk-Goal_instance(p, O) (for a goal literal p and an action instance O) in As is achieved
using the definition in section 4.2:

e there is an action instance A in the plan which is necessarily before O and contains p in its add-set;
AND

e 1o action in the plan that could possibly occur between A and O contains p in its delete-set.

Notice that O could itself be goal, in which case p would be one of the goal literals, or again, A could be the
init action, in which case p would have to be contained in the initial state. Invariant (6) corresponds to the
informal definition of goal achievement described at the beginning of section 4.

The first five conditions are expressed in VDM as follows. Readers are encouraged to try to formalise the
conditions themselves before reading on.

(1) Os(init) = mk-Action([init], { }, pp.I,{ })A Os(goal) = mk-Action([goal], pp.G,{},{})

(2) rng Os C pp.AS U {Os(init), Os(goal)}
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(3) dom Os = get_nodes(T's)
(4) AsnPs={}
(5) VA €dom Os - (p € Os(A).pre = mk-Goal_instance(p, A) € (PsU As))

The first part of (6):

“there is an action instance A in the plan which is necessarily before O and contains p in its add-set ... ”

formalises to

3A € dom Os -
before(A, O, Ts) A
p € Os(A).add

To formalise the second part, we make use of the partial order’s possibly_before function. The expression:

possibly_before(A, C, Ts) A possibly_before(C, O, Ts)

means that A could be ordered to be before C, and C could be ordered to be before O, with respect to the
partial order Ts. This captures the idea that C could be ordered to be between A and O in partial order Ts.
In figure 6.3, for example, this expression is true for C = C4, and for A and O as they actually appear in the
figure. Hence the second part:

“no action in the plan that could possibly occur between A and O contains p in its delete-set.

formalises to:

-(3C € dom Os -
possibly_before(C, O, Ts) A
possibly_before(A, C, Ts) A
p € 0s(C).del)

We put these conditions together into a function definition, which defines what it means for A to be an achiever
of pat Oin Ts:

achieve : Action_instances X Bounded_Poset X Action_id X Goal_instance — B

achieve (Os, Ts, A, mk-Goal_instance(p, O)) A
before(A, O, Ts) A
p € Os(A).add A
-~(3C € dom Os -
possibly_before(C, O, Ts) A
possibly_before(A, C, Ts) A
p € 0s(C).del)

and finally we can write condition (6) as:
Vgi € As-3J A € dom Os - achieve(Os, Ts, A, gi)

Hence the final VDM state definition is:

state Partial_Plan of
pp : Planning_Problem
Os : Action_instances
Ts : Bounded_Poset
As : Goal_instances
Ps : Goal _instances
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inv mk-Partial_Plan(pp, Os, T's, As, Ps) A

Os(init) = mk-Action([init],{},pp.I,{}) A
0s(goal) = mhk-Action([goal], pp.G, { 1, { D}) A
rng Os C pp.AS U {Os(init), Os(goal)} A
dom Os = get_nodes(Ts) A
AsNPs={}A
VA€ dom Os-(p € Os(A).pre = mk-Goal_instance(p, A) € (PsU As)) A
Vgi € As-3 A € dom Os - achieve(Os, Ts, A, gi)

end

Exercise 7

1. Check that the Painting World examples in Examples 6, no. 1 and no. 2, satisfy the formal definition of
goal achievement.

2. The definition of achieve may be logically transformed to make prototyping more straightforward later in
the paper. Using the definitions of possibly_before and before already supplied, show that:

-(3C € dom Os -
possibly _before(C, O, Ts) A
possibly _before(A, C, Ts) A
p € Os(C).del)

transforms to:

VC € dom Os -
cC=0V
C=AvV

before(O, C, Ts) V
before(C, A, Ts) V
- (p € 0s(C).del)

4.5 VDM Operations

4.5.1 Operation INIT

As usual we will construct the initialisation operation first. This inputs a Planning_Problem and outputs the
first plan. The only action instances in Os are init and goal, there are no achieved goal instances, and the only
goal instances to be achieved are those from the goal set itself, pp.G.

INIT (pps : Planning_Problem)
ext wr pp : Planning_Problem
wr Os: Action_instances
wr Ts: Partial_order
wr Ps: Goal_instances
wr As: Goal_instances
pre true
post pp = ppi A
Os = {init — mk-Action([init], { }, ppi.I,{ }), goal — mk-Action([goal], ppi.G,{},{})} A
Ts = init_poset() A
Ps = {mk-Goal_instance(g, goal) | g € ppi.G} A

As={}
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4.5.2 Operation ACHIEVE_1

The first operation we shall specify to achieve a goal instance uses an action instance already present in Os to
be the achiever. Labelled ‘ezt rd’ below, Os is for access only and does not change. The first post-condition
predicate we need is therefore:

3 A € dom Os - achieve(Os, Ts, A, gi)

It is not just a question of verefying that the achieve function is true for this instance, however; it may be
necessary to change the partial order T's to make sure that the achieve predicate is true. The variable Ts is
therefore labelled ‘ezt wr’ below.

We leave the specification of

is_completion_of (Ts, T's),

which defines a relation between two posets, as an exercise. The relation is true if the two posets contain the

same set of nodes, and any nodes that are ordered in T's are also ordered in T's. This relation will be used to
provide the constraint on the change to the input partial order that we require: T's must be a completion of

Ts.

Finally, the goal instance being achieved is essentially passed from Ps to As:

Ps = Ps \ {gi}A
As = AsU {gi}

Putting these predicates together, we get:

ACHIEVE_1 (gi: Goal_instance)
ext rd Os: Action_instances
wr Ts: Partial_order
wr Ps: Goal_instances
wr As: Goal_instances

pre gi € Ps

post 3 A € dom Os - achieve(Os, Ts, A, gi) A
is_completion_of (Ts, ICITS) A
Ps = Ps\ {gi} A
As = AsU {gi}

4.5.3 Operation ACHIEVE 2

The second achieve operator achieves a goal instance by the introduction of a new action instance into Os
(recall exercise 6.4 no. 2). This is necessary if no action already in the plan can be found to achieve the goal.

The new action will need a new identifier, and to create a unique one for the action instance we assume the
existence of a function which inputs a set of Action_id and outputs one not in the set:

newid (is : Action_id-set) i : Action_id
pre true
post i & is

The introduction of a new action instance can be written using the ‘let’ construct as follows:
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let NewA = newid(dom E) in
JA € pp.AS - Os = Os T {NewA — A}

and in fact we will use the ‘let’ construct to bind NewA to the new identifier throughout the whole post-
condition.

Now that there is a new action in the developing plan, we have the added problem that certain goal instances
in As may be rendered un-achieved (the technical term in planning for the plight of such unfortunate goal
instances is that they have been clobbered). Consider figure 6.4 of exercise 2 in 6.4.2. Assume that a goal
instance (¢,C1) had been achieved by action A, and that q was a member of Y’s delete-set. Then the addition
of Y to achieve goal instance (p,0) would clobber ¢, as in this case the the ‘achieve’ predicate:

achieve(Os, Ts, A, mk-Goal_instance(q, C1))

would evaluate to false, because the following expression is true:

possibly _before(Y, C1, Ts) A
possibly _before(A, Y, Ts) A
g € 0s(Y).del

The preceding argument necessitates the ‘declobber’ condition in the post-condition of ACHIEVE 2 (we will
define it fully later).

The relationship between the old and new temporal orders (Ts and Ts) is a little more subtle in this second

P A—
achieve operation. Here, T's must be a completion of add_node(NewA, Ts), which is the ordering with the new
node added. The constraint we need on the output temporal order is therefore:

1s_completion_of (Ts, add_node(NewA, l’lTs))

Finally, Ps is augmented with the pre-conditions of the new action, and the achieved goal instance gi is passed
to As:

Ps = (119_3 \ {9¢}U {mk-Goal_instance(p, NewA) | p € A.pre}A
As=AsU {91}

Putting these conditions together, gives us the following operation:

ACHIEVE 2 (gi : Goal_instance)
ext rd pp: Planning_Problem
wr Os: Action_instances
wr Ts: Partial_order
wr Ps: Goal_instances
wr As: Goal_instances

pre gi € Ps
A
post let NewA = newid(dom Os) in

JA € pp.AS - Os = Os t {NewA — A}
achieve(Os, Ts, NewA, gi) A

Vgj € 4s - declobber(Os, Ts, NewA, gj) A

1s_completion_of (T's, add_-node( NewA, ITTS)) A

Ps = (113_3 \ {9i}) U {mk-Goal_instance(p, NewA) | p € A.pre} A
As = AsU {gi}
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The declobber condition effectively insists that each ¢i in As remains achieved after the addition of { NewA —
A} to Os. If we let gi = mk-Goal_instance(q, C), then this is so if one of the following conditions is met:

e ( is necessarily before NewA in Ts:
before(C, NewA, T's)
e NewA does not contain ¢ in its delete-set:

- (q € Os(NewA).del)

e there is an achiever for gi called W which is constrained to be between NewA and C':

W € Os -
(before(NewA, W, Ts) A
before(W, C, Ts) A

q € Os(W).add)

Let us return to the example in figure 6.4 of exercise 2 in section 4.2. We had assumed above that a goal
instance (¢,C1) had been achieved by action A, and that q was a member of Y'’s delete-set. After the addition
of Y to the plan (to achieve goal instance (p,0)), the goal instance (¢,C1) therefore had been clobbered by
Y. Consideration of the first condition above leads us to one way of declobbering: the temporal order can
have an arc added from C1 to Y, to make sure that the clobbering action would be applied after C1.

Putting the disjunction of conditions together, the definition of function declobber is formed:

declobber : Action_instances X Bounded_Poset x Action_id X Goal_instance — B

declobber (Os, Ts, NewA, mk-Goal_instance(q, C)) A
before(C, NewA, Ts) V
- (q € Os(NewA).del) V
IW € Os -
(before(NewA, W, Ts) A
before(W, C, Ts) A
g € Os(W).add)

Exercise 8

Counsider our running example using figure 4 of exercise 2 in section 4.2. Under what other conditions (apart
from the one we have given above) could goal instance (g,C1) be declobbered?

4.5.4 Proof Obligations

We discharge the proof obligation for ACHIEVE _1, while leaving the proof obligations for INIT and ACHIEVE 2
as an exercise.

Firstly, we make the observation that ACHIEVE_1 as it stands is not satisfiable! In other words, there is there
is a binding of inputs that will result in no output state. This is demonstrated by considering the VDM state
output from INIT and input to ACHIEVE_1 : the only ‘action’ in the plan before goal is init, and if gi cannot
be achieved by init, then ACHIEVE_1 will fail. Exercise 5 no.5 asks you to find a pre-condition that renders
this operation satisfiable.

We can show, however, that if ACHIEVE_1 outputs a state (and it is non-deterministic in that there may be

many states satisfying the post-condition) then the state is valid with respect to the invariant. In the informal
proof below, we refer to the invariant’s components (1) through to (6):
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e (1) and (2) remain true because Os is unchanged.

o the truth of (3) is preserved over the state change because the nodes in T's remain constant, and Os is
unchanged.

e the final two conditions in the post-condition take a gi from Ps and put it in As. These two sets stay
disjoint, and so (4) is true.

e The specification preserves the sets Ps U As and Os, hence (5) is preserved.

To finish, we must show (6) is true in the output state. ACHIEVE_1’s post-condition asserts that the new
goal instance is achieved, and in the old state we have (asserted by the invariant) that all the other gi’s were
achieved. It remains, therefore, to show that these gi’s are still achieved in the new state. By exercise 6.4 no
3, the addition of extra temporal constraints into T's does not invalidate any achieved goal instances, and so,
also using the fact that Os is unchanged, we argue that the final part of the invariant remains intact.

Additional Problems 6

Some of the Problems below are quite hard. The reader who wants to get a better feel for the specification is
encouraged to precede to the next chapter, where it is prototyped.

Problem 1. Specify a function which inputs a Partial_Plan and returns true if the problem it contains has
been solved (hint: the problem is solved if all the goal instances in the plan have been achieved).

Problem 2. Perform the proof obligations for INIT and ACHIEVE 2.

Problem 3. (project) The four Blocks World grasp actions may be written as one paramerterised action
(refer to Exercise 2, no. 2):

name: grasp X

pre-conditions: ‘X is a block’, ‘X has a clear top’, ‘gripper is free’ ;
add-set: ‘gripper grasps X’ ;

delete-set: ‘X has a clear top’, ‘gripper is free’ ;

and in general it is much more expedient to pose actions as paramerterised structures. Re-specify both design
levels of the planner with the extension that actions can be posed with parameters.

Problem 4. (hard) Show that a Partial_Plan which has an empty Ps necessarily contains a plan which
satisfies the post-condition of PLANNER. Hence demonstrate the connection between the abstract planning
specification of PLANNER and the design level planner of section 4.

Problem 5. Add a pre-condition to ACHIEVE_2 to make it satisfiable.

5. Protoyping the Specification

In this second part of the paper we we will describe some of the principles of prototyping model-based spec-
ifications, and illustrate the idea by constructing prototypes in the Prolog programming language. Our main
example will be prototyping the case study of the last chapter, resulting in a full implementation of the design
level specification of the Non-linear Planner, which is supplied in Appendix 1.

Prototyping a model based specification S means translating S into a program P which, though not neces-
sarily satisfying efficiency or other non-functional constraints, is correct with respect to S. This allows the
specification to be animated, which enables developers and end users to check early in the development stage
that the specification is a valid representation of their requirements. Other advantages include:

26



e the promise of a working prototype lessens the risk factor involved for a software purchaser: instead of
waiting untill a full implementation is available, the prototype is a working model which gives a good
indication of what the final product will be like;

e constructing a prototype helps in debugging the specification: even after proof obligations have been
successfully discharged there may remain errors in the logic;

e it is pleasing, after expending much effort on a static, mathematical specification, to be able to get
something working!

If the programming language in which P is created (call it PL) is well chosen, then prototyping P can be a
semi-automatic process with a very high degree of certainty that P will be correct with respect to S. To be
a good prototyping language, PL should contain constructs that are similar to the specification language (say
SL) in which § is written. In effect, this means that the semantic gap between SL and PL should be small
with respect to:

e operations: it should be straightforward to translate operations and functions written in SL into PL.

e data types: PL should either support the same data types as SL, or it should be easy to implement
them.

The main difference between an SL and a PL is that a PL has a procedural semantics. This means that a
program P written in PL is executable in the sense that it (together with an interpreter for PL) can accept
input data and should output data. If P is a correct implementation this input-output relationship will always
conform to specification S. For example, with SL = VDM, PL = Prolog, our prototype planning program in
Appendix 3 should input planning problems and output solutions conforming to the specification in section 4.
The relationship between implicit and explicit function definitions is analogous to the relationship between a
specification and its prototype.

The main deficiency of prototyped specifications is that they tend to be inefficient in time and space. This is
due to two factors:

e a naive implementation: if P is written following the same structure as S, the program itself may be
grossly inefficient.

e compilers producing slow code: good candidates for PL (such as Prolog) have compilers which tend to
produce less efficient code than imperative languages (such as Ada or Modula-2). This is not surprising,
as imperative languages reflect the prevailing computer architecture.

Another problem faced when prototyping many specifications which concern the functional aspects of software
is that an interface must be constructed to handled input and output. In the simplest terms, procedures for
efficiently allowing the input of data, and presenting the output in an intelligible form, need to be written.

6. Prolog as a Prototyping Language for VDM

6.1 Prolog

Prolog is a general purpose logic programming language that was developed in the 1970’s for use in Artificial
Intelligence, especially in the area of Natural Language Processing. Although many interpreters, compilers
and software development environments exist for it, most dialects conform to a standardised version called
Edinburgh Prolog. We will assume that the reader is familiar with Edinburgh Prolog, and use it as our
prototyping language (in what follows by Prolog we mean Edinburgh Prolog). Interested readers will find a
good introduction to Prolog in [Clocksin and Mellish 84].

There are many advantages in the use of Prolog, including its:
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e simple form: A Prolog program is a list of clauses, each clause being a fact or a rule. Facts are predicate
structures of the form:

fact_name(ti, ..., ta).
where n > 0, and each ¢; is a term defined as

— a constant or
— a variable or

— a function symbol containing zero or more terms as arguments.

Rules are of the form
a - byc, ..., d.
where
— ‘a,b,c,...,d are predicates structures,
‘a’ is called the head of the rule,
‘b, c,...,d. is called the tail of the rule,

— ‘-’ is read as ‘follows from’.

A group of clauses which share the same head predicate is called a procedure.

e ‘dual’ semantics: Prolog programs can be interpreted in two ways:

— declaratively: each clause can be interpreted as a logic formula, generally a fact or a rule. Our
typical rule a :- b,¢, ..., d. corresponds to the logical formula:

(bAcAN..Ad) = a
where all variables in the rule are universally quantified.

— procedurally: each clause can be read as a goal oriented procedure, which asserts ‘to solve the
head, solve all the predicates in the tail’. The head predicate is akin to a procedure’s heading,
whereas the predicates in the tail can be interpreted as procedure calls. One consequence of the
goal-oriented interpretation of Prolog’s clauses is that a VDM post-condition can be modelled as
a set of Prolog goals to be achieved.

e high level data structures: Prolog’s term and list data structures can be easily adapted to implement
VDM data structures.

e backtracking: Prolog’s backtracking mechanism is a form of control which resembles naive search. The
search is for instances of a goal predicate’s variables which make a goal succeed. Later we will see how
backtracking can be used to prototype existentially quantified conditions in VDM operations.

The first two advantages pointed out above just apply to Pure Prolog, a subset of Prolog which does not
contain any side effects. Of course, as a programming language Prolog contains expressions which cannot
readily be given a logical interpretation, such as read and write procedures. The language has various other
disadvantages of which the user should be aware:

e Prolog is not a strongly typed language, and in fact variables in predicates are not type-restricted in any
way. This means that there is a danger of procedures being called with unsuitable parameter values.
With a strongly typed language (Pascal, for example) if a procedure is called with too many or the
wrong type of argument values, the implementation would automatically flag a type mismatch at or
before run-time, and the user would be aware of and could pin-point the error. In Prolog the run-time
behaviour in this case would be unpredictable, and the error would be difficult to detect and fix.

e Prolog has no (standard) module mechanism. This means data type encapsulation and information
hiding are not supported.

e Prolog does not support functional evaluation, except in some special circumstances such as numerical
evaluations. This means that every functional expression in a VDM condition must be translated into
a Prolog procedure which has an extra slot for an output value. This extra slot contains a dummy
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parameter which carries the function value to the next evaluation. For example, consider the following
VDM expression:

SNdom M

where S is a set, and M a map. Both functions ‘1’ and ‘dom’ must be implemented as Prolog procedures.
If we let these procedures be called ‘dom_map’ and ‘intersect_set’, then this expression translates to the
Prolog predicates:

dom_map(M, DomM), intersect_set(S,DomM, Result)
/* post-condition: Result = S intersect dom(M) */

‘DomM’ is the dummy parameter carrying the result of the first function evaluation to the next evalu-
ation.

e Prolog is case sensitive in that all variables have to start with a capital letter, and all predicate, function
and constant names start with a lower case letter.

6.2 VDM to Prolog Translation

The prototyping process needs to be supported with a set of tools and techniques specific to Prolog. Firstly,
we will show how a set of tools can be created to support VDM data types; then we will devise a method to
translate systematically VDM operations into Prolog clauses. The fact that the logic of pre- and post-conditions
can be reflected within the declarative semantics of Prolog, makes the translation relatively straightforward,
although one must also be aware of certain pitfalls.

VDM has been successfully prototyped using other programming languages, and various support kits have
been written. For example, ‘me too’ [Henderson and Minkowitz 86] was an early system for prototyping VDM,
using LISP as the target language. As a preliminary to our implementation fragments below, we set out some
conventions for Prolog:

e code will be put in a bold typeface (unlike pseudo-code which appears in italics);

e procedures in the toolkits implementing the Set, Sequence, Map and Composite will have ‘set’, ‘seq’,
‘map’, and ‘comp’ tagged on to the end of their names accordingly;

e primitive recursive procedures will be headed with pre- and post-conditions, relating input and output
parameters.

e output parameters will be placed to the right in a procedure heading, separated from the input param-
eters by three spaces (there may be occasional exceptions to this, as some parameters may be used for
input or output);

e where we represent VDM states as parameters below, the input state parameters will be tagged with
the letter ‘T, and output state parameters with the letter ‘O’.

6.3 Data Type Implementation

VDM'’s Set, Sequence, Map and Composite types can all be implemented quite easily. In this section we show
the reader how to implement the Set type only, although implementations of all the four types are given in
appendix 3. First it is necessary to represent the Set with a Prolog structure, and to do this we will use
Prolog’s List. The examples of sets in chapter 3:

{1,4,9,16,25, 36,49, 64, 81}
{1,2,3,5,7,11}
{1}

can be written as Prolog lists as follows
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1,4,9,16,25, 36,49, 64, 81]
[1,2,3,5,7,11]
]

Recall that whereas in a set representation the left to right ordering of elements is irrelevant, in a list (which
is similar to a sequence) different orderings of the same elements denote different lists. Hence a special set
equality predicate must be defined, and we do this in terms of the subset (C) relation, which in turn will be
defined using the ‘element of’ (€) relation:

X=Yifandonlyif X CYAY CX
XCVYifandonlyifVee X -e€Y

To implement set equality, we first implement the ‘€’ relation using a simple list processing procedure:

/* element_of_set(E,Y) */
/* pre: Y is a set */
/* post: E is an element of Y */
/* iff element_of_set(E,Y) succeeds */

/*(1)*/ element_of_set(E,[E|Y]).
/*(2)*/ element_of_set(E,[_|Y]) :-
element_of_set(E,Y).

(1) reads as: “element_of_set’ succeeds if the element to be tested is at the head of the list’. The rule in
(2) reads as: ‘if (1) is not the case, then apply ‘element_of set’ to the tail of the list. The empty slot ’
in ‘element_of set(E,[_|Y])’ represents a variable which we do not need to give a name to (as it is not used
elsewhere in the rule). Next we can define subset, and finally the equality predicate (which we call ‘eq_set’):

/* sub_set(X,Y) */
/* pre: X,Y sets */
/* post: X is a subset of Y */

iff sub_set(X,Y) succeeds */

sub_set ([First_Element|Rest],Y) :-
element_of_set(First_Element,Y),
sub_set(Rest,Y),!.

sub_set ([1,Y).

/* eq_set(X,Y) */
/* pre: X,Y sets */
/* post: X=Y iff eq_set(X,Y) succeeds */

eq_set (X,Y) :-
sub_set (X,Y),
sub_set(Y,X),!.

Note the use of Prolog’s ‘cut’ (‘") in the last two procedures. The ‘cut’ is a device to stop Prolog’s backtracking
mechanism: procedures which are implementing functions only have one output value that satisfy their inputs,
therefore backtracking within their procedural definition is worthless. Using the ‘cut’ in the manner above
stops backtracking within the function defintion.

The subset procedure shows the disadvantage of Prolog not being a strongly typed language: the second clause
asserts that the empty list (or empty set in our interpretation) is a subset of anything. We have to rely on
the commented preconditions being followed for the integrity of this procedure. An alternative suggested in
exercise 7.2 would be to create the procedure is_a_set(X) which checks variables, returning true only if its
argument is a set. This way a type mechanism can be implemented on top of Prolog.

Set functions are implemented in terms of the ‘element_of_set’ procedure:
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e The union operator ‘U’

/* union_set(X,Y,Z) */
/* pre: X,Y sets */
/* post: Z = X union Y */

union_set ([E|X],Y,[E|Z]) :-
not (element_of_set (E,Y)),
union_set(X,Y,Z),!.

union_set([E|X],Y,Z) :-
element_of_set(E,Y),
union_set(X,Y,Z),!.

union_set([],Y,Y).

e The intersection operator ‘N’:

/* intersect_set(X,Y,Z) */
/* pre: X,Y sets */
/* post: Z = X intersect Y */

intersect_set ([EIX]1,Y,[E|Z]) :-
element_of_set(E,Y),
intersect_set(X,Y,Z),!.
intersect_set([E|X],Y,Z) :-
not (element_of_set(E,Y)),
intersect_set(X,Y,2),!.
intersect_set([],Y,[1).

e The set difference operator ‘-’:

/* minus_set(X,Y,Z) */
/* pre: X,Y sets */
/* post: Z = X minus Y */

minus_set([E|X],Y,Z) :-
element_of_set(E,Y),
minus_set (X,Y,Z),!.
minus_set ([E|X1,Y,[EIZ]) :-
not (element_of_set(E,Y)),
minus_set(X,Y,Z),!.
minus_set ([],Y,[]).

0.0.1 Exercises 9

1. The VDM primitive function #/ can be implemented with just one Prolog fact:

/* tl_seq(List_in, List_out): */
/* post: List_out = t1l(List_in) */
tl_seq([HI|T], T).

Implement the rest of the Sequence data structure’s functions in Prolog.

2. Implement the Composite and Map types in Prolog, ensuring that the representation of these structures is
insulated from the rest of the program. To do this you need to provide the implementations for the procedures
specified below, which initialise, add and retrieve values to and from these structures.
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/* init_comp(Name, List_of_slot_names, List_of_slot_values, Comp ): */

/* post: Comp is a composite structure with name Name, and a list */
/* of component names given in List_of_slot_names, with corressponding */
/* values in List_of_slot_values */
/* put_comp(Comp, Slot_name, Value, NewComp): */
/* post: NewComp = Comp except Slot_name(NewComp) = Value */
/* get_comp(Comp, Slot_name, Value): */
/* post: Value = Slot_name (Comp) */
/* init_map( Map) */
/* post: Map is an empty map */
/* overwrite_map(Map, Dom, Value, NewMap) : */
/* post: NewMap = Map + [Dom -> Value] */
/* apply_map(Map, Dom, Value): */
/* post: Value = Map(Dom) */
/* dom_map(Map, Dom_Map): */
/* post: Dom_Map = dom(Map) */
/* ran_map(Map, Ran_Map): */
/* post: Ran_Map = ran(Map) */

6.4 Operator Translation

Some basic rules for the translation of VDM operators into Prolog are given below. We start with the
assumption that a VDM operator has the following form:

OP_NAME (il : t’il, ceey ’in : tin) o:to
ext wr s: state_type
pre pre(ii, ..., in, S)

post post(ii, ..., in, 5o, s)

where 41, .., i, is a list of input parameters, o an output parameter, and ¢, .., ti,, to their respective types.
The head of the Prolog procedure that is created from this will have the following form:
op (i1, ey tn, s, o0, s)

Input and output states are represented with explicit parameters, to avoid the problem of managing global
data. Otherwise, the VDM state can be represented in Prolog as a collection of facts, or as a single fact, and
state changes performed by Prolog’s assert and retract predicates. The ad hoc use of global data effected by
assert and retract tends to make Prolog programs unmaintainable.

The op procedure can have a number of clauses, depending on the logical form of the pre- and post-conditions.
Disjunction or implication in an operator’s conditions leads to a definition with several clauses. We will assume
for the moment that the conditions are conjunctions of predicates without any quantified variables, that is:

pre(ity ..oy in, 8) = P1 A P2 Ao A P
post(i1y.yin, 8 ,0,8) =@ A@A...ANq
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Now each of the p; and g; could be either:

e primitive predicates, pre-defined in VDM, such as ‘€’ and ‘=, or

e user-defined predicates, such as achieve and before of chapter 6.

We let each of these types of predicates be implemented by a corresponding Prolog procedure: proc_p; for
p1, proc_q1 for ¢i, and so on. The names proc_pi, proc_ps, ... represent procedures which may contain input
parameters (including the input state parameter). The names proc_qi, proc_qa, .. each represent procedures,
but they may contain references to any input or output parameters or states. A simple monolithic translation,
combining pre-condition procedures with those in the post-condition into one clause, gives:

0p(1, -, iny 01, eevy O, 5, 8) 5 -
proc_p1,

proc_pa,

ey

Proc_pk,

proc_qi,

proc_g,

ey
proc_q.

The specification of each proc_p; is given essentially by treating p; as its post-condition. The specification of
each proc_g; is a little more complicated since these procedures effectively have to achieve the post-condition
of op. In achieving a predicate, there is always the possibility that an already achieved predicate may be
un-achieved! The reader should see the parallel with clobbering in the planning application of chapter 6,
where the effect of one action could undo the achievement of one goal. The similarity is not surprising since
programming to achieve a specification is a form of planning.

In fact the post-condition of proc_g; is ¢1 A g2 A ... A ¢;, since we require proc_¢; to achieve condition ¢;, while
preserving conditions g1 A ¢2 A ... A gj-1. Although strictly speaking this is the case, it is more expedient to
consider ¢; as the post-condition of proc_g;, and keep a watchful eye that previous predicates are not undone.

A more elaborate way to translate operators into Prolog procedures is to first create a procedure which executes
the post-condition procedures only if the pre-condition is met:

- . L
0p(#1y .y Iny O1y vy Omy S 4 8) 1

proc_p1,
proc_ps,
-
proc_pr,

. . L
ezecute_op-name(t, .., in, 01, ..., Om, 8 , 8).

. . L
0P (i1 ey Ty O1y vvy Omy 8 5 8) 1 -

write('operator pre-condition failure’).

If the pre-condition procedures succeed, the first clause calls ezecute_op which ‘executes’ the operator. The
second clause outputs an error message if the pre-condition procedures fail, which means the operator cannot
be executed. execute_op_name is defined:

z_

ezecute_op_name(t, .., in, 01, ...y Om, 8 ,8) i -
proc_qi,
proc-qz,

ceey

proc_q.

This second form, although longer, is more secure since errors in the implementation of the post-condition
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will not be confused with failing pre-conditions. To keep the length of the code fragments in this chapter to a
minimum, however, we adopt the first form.

Examples 5

1. The estate agent database operator MAKEOFFER is defined thus:

MAKEOFFER (addr : Address)
ext wr forsale, underoffer : Address-set

pre addr € forsale
post forsale = forsale \ {addr} A underoffer = underoffer U {addr}

Prototyping MAKEQOFFER is straightforward, because its pre- and post-conditions are conjunctions of pred-
icates. It translates into one clause consisting of primitive procedures:

makeoffer (Addr, Forsalel, UnderofferI, ForsaleO, Underoffer0) :-
element_of_set (Addr, ForsaleI),
minus_set (ForsaleI, [Addr], Forsale0),
union_set (UnderofferI, [Addr], UnderofferQ).

2. Consider the ADD operator of the Symbol_table of chapter 4:

ADD (i: Identifier, a : Attribute)
ext wr s: Symbol_table
pre s#[|Ai¢g dom (hd s)

post s =[(hd 5)f{i> a}] " tl 5
Again, the implementation is made up completely from data structure primitives:

add(I, A, SI, SO -
not(SI = [ 1), /* pre-conditions: */
hd_seq(SI, SIhd),
dom_map (SIhd, DomSIhd),
not (element_of_set (I, DomSIhd)),
overwrite_map(SIhd,I,A, SIhdl), /* post-conditions: */
t1l_seq(SI, SItl),
append_seq([SIhd1],SItl, S0).

Notice how the dummy variables (SIhd, DomSIhd, SIhdl) are required to store the results of operator evalua-
tion.

Exercise 10

1. Prototype the DELETE_HOUSE, PUSH and POP operations of chapters 3 and 4.

2. Create a general translation method for VDM operations which includes conditions containing ‘V’; the
logical ‘or’ operator.

3. Implement the type checking predicate is_a_set(X), and hence create a type checking mechanism for the
Prolog implementation of VDM data structures.
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6.4 The Existential Quantifiers

The quantifier ‘3’ invariably occurs in a VDM condition in the following type of expression:
3X € some_set - p...

where X occurs as a free variable in p. This can be simulated in Prolog using a free variable for X in the
‘element _of_set’ procedure. Assuming procedure ‘proc’ achieves predicate p (that is ‘proc’ is the the prototyped
version of p), the expression above can be translated to the piece of code:

element_of_set (X, Some_set), proc,

X will become instantiated with the first element of ‘Some_set’ by the execution of ‘element_of_set’. If ‘proc’ fails
with that instantiation, Prolog’s backtracking mechanism will re-call ‘element_of_set’ which will succeed with
another instance for X. This will continue systematically (because ‘Some_set’ is implemented as a list) until
‘proc’ eventually succeeds. Hence Prolog’s backtracking mechanism persists in backtracking to ‘element_of_set’
until the correct element is picked. If all elements are exhausted and ‘element_of set’ eventually fails, the
condition cannot be satisfied.

Example 6

A RETRIEVE operation can be written to rely on an existentially quantified variable b in its pre-condition:

RETRIEVE (i : Identifier) a : Attribute
ext rd s: Symbol_table

pre Jdb € elems s-i € dom b
post a = get_from_table(s, i)

This translates into:

retrieve(I,S, A) :-
elems_seq(S, SetS),
element_of_set (B, SetS),
dom_map(B, domB),
element_of_set (I, domB) ,
get_from_table(I,S, A).

In this example, backtracking actually occurs across the middle procedure ‘dom_map’. Whatever instance of
‘B’ the procedure ‘element_of_set’ produces, ‘dom_map’, being a total function, succeeds. The fourth procedure
call in the clause fails until the correct choice of ‘B’ has been picked.

6.5 The Universal Quantifier

The universal quantifier appears in a VDM condition as the existential quantifier above:
VX € some_set-p...

where X occurs as a free variable in p. To implement this expression in Prolog the procedure (call it ‘Proc’)
corresponding to the predicate p has to be called repeatedly for all instances of X in some_set. This contrasts
with the case of the existentially quantified variable, where only one successful procedure call needs to be
made. Also, if the scope of X is more than one predicate, then we let ‘Proc’ correspond to all these predicates.
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For this implementation we need two special Prolog predicates (the reader who is not too concerned about low
level implementation may simply examine the post-condition of the implementing procedure below and move
to the next section):

e the meta-predicate call(X), which executes its argument X as a normal Prolog goal.

o the infix operator ‘=..’, which succeeds if its right hand argument is a list of terms making up the
structure of its left hand argument. For example the Prolog goal ‘f(x) =.. X’ would succeed with X
bound to [f, x].

Using call(X) we can create an iterative procedure with the name ‘for_all_els’ which repeatedly calls the
procedure ‘Proc’. This procedure call will have a different value from some_set on each invocation:

\* post: for_all_els( Some_set, Proc) is true
iff for all X in Some_set : p is true */

for_all_els( [ ], Proc).

for_all_els( [E|L], Proc) :-

Proc =.. 0L,
append (0L, [E], OL1),
ProcE = ..0L1,

call (ProcE),
for_all_els( L, Proc).

For this to succeed, the procedure ‘Proc’ must be defined so that its last argument expects a value from the
set S. ‘for_all_els’ is then supplied with the ‘Proc’ procedure instance without its last argument. Then, the
three procedure calls

Proc =.. 0L,
append (0L, [E], OL1),
ProcE =.. 0OL1,

succeed in gluing on an element of ‘Some set’ to the end of the procedure ‘Proc’, which is then called with the
correct number of arguments.

Example 7

The specification for MAX_IN in chapter 3 contained a universal quantifier:

MAX _IN (s: N-set) m: N
pre s#{}

post m€ sAVi€es-1 <m
It translates as follows:

max_in(S, M) :-
not( S =11),
element_of_set(M, S),
for_all_els(S, less_eq(M)).
less_eq(M, E) :- M =< E.

The output parameter ‘M’ here is systematically instantiated with elements of ‘S’, until eventually one is found
which satisfies the universally quantified condition. Procedures like ‘for_all_els’ that invoke meta-predicates
act in a similar fashion to higher order functions in functional programming languages.
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Exercise 11

A complication arises if the universal quantifier occurs in the post-condition, and the predicate p relates input
and output (state) parameters. As each time ‘Proc’ is invoked, its output parameters need to be supplied as
input to the next call of ‘Proc’ with a new set element. In this case, the procedure implementing ‘for all’ must
keep track of the changing input parameter as each version of ‘Proc’ is called.

Implement a new version of ‘for_all_els’ called ‘for_all_elsIO’ along these lines. It should include two extra
arguments for the input and output parameters, as follows:

\* post: for_all_elsIO(S,Proc,In,Out) is true iff
forall X in S: p(In,Out,X) is true */

The answer to this exercise also appears in Appenix 1.

6.6 Prototyping Pitfalls

The main problem in producing naive prototypes along the lines above is the threat of producing grossly
inefficient code. The implementation of MAX_IN was such an example. A more extreme case arises from the
specification of a sort function below, which inputs an arbitrary sequence of integers and outputs the ordered
sequence:

SORT (in:N") out : N*
pre true

post permutation(in, out) A ordered(out)

Assuming permutation and ordered are defined elsewhere, the naive translation to the top level procedures
would be:

sort (In, Qut) :-
permutation(In,QOut),
ordered (Out) .

The implementation that this leads to is very inefficient: the first procedure permutation will blindly generate
permutations of the initial sequence, until one is eventually found that is ordered. Though the specification of
sort seems to be a natural one, an implementation that follows its structure is inadequate.

Output state variables and the output parameter in implicitly defined operations can cause related problems.
In theory, they are dealt with in a similar way to existentially quantified variables: Prolog’s backtracking
mechanism iterates until values are found for them which satisfy the post-condition. Unfortunately, in very
abstract definitions, this is impractical. An example which we met in chapter 6, was the top level specification
of the Planner:

PLANNER (pp : Planning_Problem) soln : Action®
pre true

post elems soln C pp.AS A
complete(soln, pp.I)) A
pp.G C apply_seq(soln, pp.I)

Taking the predicates in the order they are written, to produce a prototype we might construct a procedure
to generate actions sequences from the set of all actions in the planning problem, but this would lead to a
hopeless implementation!
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One general way of improving efficiency in prototypes is by judicious re-ordering of its procedures, although
any ordering of the procedures produced from SORT and PLANNER would result in at least a very inefficient
implementation®. Specifications such as these would have to be transformed or refined before the kind of
method we are advocating would be worthwhile.

We end the section on a more optimistic note: this final example will show how a computationally ‘explosive’
prototype can be rescued and made efficient with a correctness preserving transformation. The before function
in chaper 5 was defined with the use of an existential quantifier:

before : Nodes x Nodes x Arc-set — B

before (z, z,p) O
mk-Arc(z,2z) €Ep V
Iy € get_nodes(p) - before(z,y, p) A before(y, z, p)

Disjunction in the function definition means that the Prolog procedure will have to be split into a list of clauses,
one for each formulae connected by the disjunction. In this case we will have two clauses: the first constructs
the arc composite, and checks whether it already occurs in the poset p:

before(X,Z,P) :-
init_comp(arc, [source,dest], [X,Y], ARC),
element_of_set (ARC, P),!.

The second clause contains the recursive calls, to find arc paths:

before(X,Z,P) :-
get_nodes (P, Nodes),
element_of_set(Y, Nodes),
before(X,Y,P),
before(Y,Z,P).

The problem is that the double call to procedure ‘before’ does not lead to a systematic algorithm. A logically
equivalent definition is as follows:

before : Nodes x Nodes x Arc-set — B

before (¢, z, p) A
mk-Arc(z,2) Ep V
Jy € get_nodes(p) - mk-Arc(z, y) € p A before(y, z,p)

This version leads to a workable prototype because the search for a path is defined in a systematic manner:

before(X,Z,P) :-
get_nodes (P, Nodes),
element_of_set(Y, Nodes),
init_comp(arc, [source,dest], [X,Y], ARC),
element_of_set (ARC, P),
before(Y,Z,P).

3In fact, systematically generating instances of soln from complete(soln, I(pp)) in a planner corresponds to
very inefficient search strategies such as ‘breadth-first search’.
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Exercises 12

1. Prototype the rest of the poset specifications in chapter 5, in Prolog (note that the solution can be found
in appendix 1).

2. Using either a formal or diagramatic argument, prove that the two versions of before given above are
equivalent.

7. The Planner Prototype

The method described above is used now to prototype the Planner specified in 6.4. Although the implemen-
tation of some of the functions is left as an exercise for the reader, the answers can be found in a full listing of
the whole prototype in Appendix 1. We develop the prototype in a top-down fashion, rooting the procedures
eventually in the primitive data structure functions of Section 6.

Each of the three operations INIT, ACHIEVE_1 and ACHIEVE_2 will be translated to a top level Prolog
procedure, using the methods outlined above. The efficiency problem is not so acute in this application, because
of the fairly concrete, and goal directed nature of the specification. Nevertheless, re-ordering the goals in some
of the resulting Prolog clauses certainly makes the prototype more efficient, while preserving the correctness
of the code.

7.1 The INIT Operator

The initialisation operator can be translated using the notation introduced in Exercise 9 no. 2 for the Composite
and Map types. One problem remains - that of set comprehension. Rather than producing a general procedure
to deal with set comphrension, we present a specialised solution for the expression:

{mk-Goal_instance(g, goal) : g € G(pp)}

This translates into Prolog using a recursive procedure which builds up a set of goal instances as follows:

/* make_goal_instances(A, Gs, Gi) */
/* pre: Gs is a literal set, A is an action identifier */
/* post: Gi = {mk-Goal_instances(g,A) : g is in Gs} */

make_goal_instances(Action_Id, [G|G_rest], [GilGi_rest]) :-
init_comp(goal_instance, [gl, ail, [Action_Id, GI, Gi),
make_goal_instances (Action_Id, G_rest, Gi_rest).
make_goal_instances(_, [I, 1.

Making use of this predicate, the translation of the INIT operator is then:

init (PPI, PPQ) :-
get_comp (PPI, planning_problem, i, IPP),
get_comp (PPI, planning_problem, g, GPP),
init_comp(action, [name,pre,add,dell, [ init ,[], IPP, [1 1, INIT),
init_comp(action, [name,pre,add,del], [ goal , GPP, [1, [1 1, GOAL),
init_map( 0S),
overwrite_map(0S, init, INIT, 0s1),
overwrite_map(0S1, goal, GOAL, 0S2),
make_goal_instances(goal, GPP, GIs),
initP0(Ts),
init_comp(partial_plan, [pp,os,ts,ps,as], [PPI,0S2,Ts,GIs,[]], PPO) .
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The proliferation in variable names (OS1, OS2, for example) is not only due to the lack of functional evaluation
in Prolog, but also the price of abstraction: whereas we chose to make the representation of sequences and
maps visible (as lists), the representation of maps and composites has been hidden within the definition of
these structures’ primitive functions.

7.2 The ACHIEVE Operators

ACHIEVE 1 can now be implemented by a procedure called ‘achievel’, in which all the procedures are primitive
data functions except for the ‘achieve’ predicate itself. As an external state is not accessed, the operation must
use an access function (get_comp) to break up the input plan:

achievel(PlanI, Gi, Plan0) :-
get_comp(PlanI, partial_plan, os, O0s),
get_comp(PlanI, partial_plan, ts, Ts),
get_comp(PlanI, partial_plan, ps, Ps),
get_comp(PlanI, partial_plan, as, As),

element_of_set(Gi, Ps), /* pre-condition */

dom_map(0s, Dom(s) , /* post-condition: */
element_of_set (A, Dom0Os),

achieve(0s,Ts,A,Gi, Ts_new),

minus_set(Ps, [Gi], Ps_new),

union_set(As, [Gi], As_new),

put_comp(PlanI, partial_plan, ts, Ts_new, Planl),
put_comp(Planl, partial_plan, ps, Ps_new, Plan2),
put_comp(Plan2, partial_plan, as, As_new, Plan0).

Notice how these implementations follow the specification virtually line by line, except that Prolog is more
longwinded because of its need for procedures to return function values explicitly. Our ‘predicate to procedure’
correspondence is broken in that the implementation of the ‘achieve’ procedure has as its post-condition two
predicates:

achieve(Os, Ts, A, gi) A

is_completion_of (Ts, Ts)

The last conjunction is effectively met if we constrain the implementation of ‘achieve’ so that it only adds
constraints to T's, and adds no new nodes (that is actions). The definition of ‘achieve’ in chapter 6 is:

achieve : Action_instances X Bounded_Poset x Action_id x Goal_instance — B

achieve (Os, Ts, A, mk-Goal_instance(p, 0)) &
before(A, O, Ts) A
p € Os(A).add A
-~ (3C € dom Os -
possibly _before(C, O, Ts) A
possibly _before(A, C, Ts) A
p € Os(C).del)

It will need to be transformed somewhat, to give a simpler implementation. We move the negation ‘not’
inwards, using the result of exercise 6.7 no. 2, and introduce an auxilliary predicate declobber_achieve to
produce the new form:
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achieve : Action_instances X Bounded_Poset X Action_id x Goal_instance ToB

achieve (Os, Ts, A, mk-Goal _instance(p, O)) A
before(A, O, Ts) A
p € Os(A).add A
VY C € dom Os - declobber_achieve(p, A, O, Os, C, Ts)

where:

declobber _achieve(p, A, O, Os, C, Ts) A
C=0V

C=Av

before(0, C, Ts) V

before(C, A, Ts) V

—(p € 0s(C).del)

Now we have two distinct cases to consider: one in which achieve succeeds without changing the input state’s
temporal order T's at all; and another, in which constraints have to be added to T's. Thus we have the following
cases:

e an achieving action ‘A’ is found for p, and no actions present in Os clobber (that is undo) this achieve-
ment. Therefore no constraint need be added to the temporal order (7's would remain unchanged).

e an achieving action ‘A’ is found for p, but there is at least one action which clobbers p, and there is at
least one way of declobbering it (that is putting constraints into T's which avoid the goal literal p being
clobbered).

It is desirable to make the Planner take a least commitment approach to forming plans, and so if the first case
is true then the second case need not be explored. On the other hand, if the first case is false then we want
ACHIEVE_1 to be able to make a non-deterministic choice among the set of possible declobbering constraints
(potentially therefore, a backtracking mechanism could generate every possible choice). The first part of the
achieve implementation is (in the code below we put in comments next to a procedure its the corresponding
predicate post-condition, where possible):

achieve(0s,Ts,A,GI, New_Ts) :-
get_comp(GI,goal_instance, ai, 0),
get_comp(GI,goal_instance, gi, P),
apply_map(Os,A, Actionh),
get_comp (ActionA,action,add, AddA),
element_of_set (P, AddA) , /* P is in Os(A).add */
make_before(A,0,Ts, Ts1), /* before(A,0,Ts1) */
dom_map(Os, Dom0s),
for_all_elsI0O(DomOs, declobber_achieve(P,A,0,0s), Tsi, New_Ts) .

Again, the reader should notice how the code mirrors the specification. One change in ordering we have made is
in switching around the ‘apply map’ and ‘make_before’ procedures - this improves the efficiency of the planner.

The ‘declobber_achieve’ procedure has two parts: the first, where the partial order Ts remains unchanged,
and the second in which it is necessary to add a constraint. If the first part succeeds we do not require any
other alternatives involving temporal constraint additions, therefore Prolog’s ‘cut’ will be used to cut down
the alternatives in that case:

declobber_achieve(P,A,0,0s,0,Ts, Ts) := !'. /¥ C=0V x/
declobber_achieve(P,A,0,0s,A,Ts, Ts) := !. /* C= AV %/
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declobber_achieve(P,A,0,0s,C,Ts, Ts) :-

before(0,C,Ts),!. /* before(0,C,Ts) V */
declobber_achieve(P,A,0,0s,C,Ts, Ts) :-
before(C,A,Ts),!. /* before(C,A,Ts) V */

declobber_achieve(P,A,0,0s,C,Ts, Ts) :-
apply_map(0s,C, CA),
get_comp(CA,action,del, CAD),
not (element_of_set(P,CAD)),!. /* not( p in 0s(C).del) #*/

declobber_achieve(P,A,0,0s,C, Ts, New_Ts) :-

make_before(0,C,Ts, New_Ts). /* make before(0,C,Ts) */
declobber_achieve(P,A,0,0s,C, Ts, New_Ts) :-
make_before(C,A,Ts, New_Ts). /* make before(C,A,Ts) */

Finally, the ACHIEVE_2 operation is prototyped in a similar manner:

achieve2(PlanI, Gi, Plan0) :-
get_comp(PlanI, partial_plan, pp, PP),
get_comp(PlanI, partial_plan, os, 0s),
get_comp(PlanI, partial_plan, ts, Ts),
get_comp(PlanI, partial_plan, ps, Ps),
get_comp(PlanI, partial_plan, as, As),
element_of_set(Gi, Ps), /* pre-condition */

dom_map(0Os, Dom0s), /* post-condition: */
newid (Dom0Os, NewA) ,

add_node (NewA,Ts, Ts2),

get_comp (PP,planning_problem, as, ASpp),
element_of_set(Action, ASpp),

overwrite_map(0s,NewA,Action, Os_new) ,

achieve(Os_new,Ts2,NewA,Gi, Ts3),
for_all_elsI0O(As, declobber(Os_new,NewA), Ts3, Ts_new),

get_comp (Action,action,pre, Pred),
make_goal_instances(NewA, Prel, GIs),
minus_set(Ps, [Gi], Ps_newl),

union_set(Ps_newl, GIs, Ps_new2),

union_set(As, [Gil, As_new),

put_comp(PlanI, partial_plan, os, Os_new, Planil),
put_comp(Planl, partial_plan, ts, Ts_new, Plan2),
put_comp(Plan2, partial_plan, ps, Ps_new2, Plan3),
put_comp(Plan3, partial_plan, as, As_new, Plan0).

Exercise 13

Continue the prototyping exercise. You will need to implement procedures corresponding to the predicates
declobber and newid, using the specifications in the last chapter, and also a top levelprocedure conforming to
the algorithm in figure 6.2. Compare your answers with the implementation in the appendix.

5 4-Add all new partial plans generated by step 3 to the Store
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7.3 Summary

Prototyping VDM specifications using Prolog involves, firstly, building a set of tools in Prolog to support the
Set, Sequence, Map and Composite data structures. VDM operators are then translated into Prolog clauses,
roughly by considering each predicate in an operator’s pre- and post-condition as the post-condition of its
corresponding Prolog procedure.

The advantages in using Prolog is that there is a correspondence between the Prolog’s declarative semantics
and the logic of an operator’s conditions, and that Prolog’s backtracking mechanism can be used to find the
correct choice of existentially quantified variables. The chief disadvantages are in the insecurities of Prolog
(it is not strongly typed, it has no data encapsulation mechanisms), and in its lack of functional evaluation,
causing long winded implementations.

Additional Problems: Improvements to the Planner and the Prototype

We offer some suggestions for improving and expanding both the specification and the prototype, which the
reader may like to take up as a project (these suggestions range from ‘extended coursework’ upwards.. )

— After extending the planner so that it accepts parameterised actions (see the additional problems at the end
of chapter 6) prototype your new specification.

— A hierarchical planner is one whose domain model must be specified at several levels of abstraction. The
planner we have presented is ‘flat’, but it can be extended to plan within a hierarchy with the addition of a
refine operation, which can be specified in much the same way as the ‘achieve’ operations. By consulting the
AL planning literature, try to extend the design level specification to that of a hierarchical planner (for some
help in this consult the PhD thesis in [Fox 90]).

— The planning algorithm involves three types of choice: which partial plan to choose from Store, which goal
instance to achieve in that plan, and which way to achieve the goal instance. Letting these choices be random
is very inefficient. Try to construct heuristic rules which influence these choices.

— Re-arrange the procedures in the achieve procedures to increase the planner’s efficiency. For example, try to
cut down the amount of backtracking Prolog has to perform to find an action to achieve a goal.
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