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Abstract

Theprocessof howknowledge is acquired
and formulatedin knowledge-intensiveAI
is difficult for a studentto grasp without
practical experience. Often,AI text books
andlecturenotescontainexamplesof logic
formulaor structuredknowledge represen-
tationswhich arewell refinedandbugfree.
Thesepolishedexamplesare thenusedto
showreasoningmechanismsor the execu-
tion of AI search methods.Theprocessof
how the knowledge representationsthem-
selvesare acquired and validatedis often
neglected. In this paper we describethe
useof a tool called GIPO for teaching AI
students.GIPO helpsstudentsunderstand
and integrate aspectsof knowledge acqui-
sition, knowledge engineering, automated
planningand machine learning. We show
how the tool’s features supportsteaching
andthestudent’s learningexperience, and
helpsintegratethetheoryandpracticein a
range of AI andrelatedsubjectareas.

1. Introduction
Very often AI practical classes,AI text
booksandAI lecturenotesstartwith exam-
plesof logic formula or structuredknowl-
edgerepresentationswhich arewell refined
andbug free. Thesepolishedexamplesare
then usedto show reasoningmechanisms
or the execution of AI searchmethods.
For example,in AI planning,studentsare
givena setof craftedactionrepresentations
and are then shown how planning algo-
rithms reasonwith thesestructuresto gen-
erateplans.Both thestructuredrepresenta-
tions employed, and the reasoningmecha-
nismsthemselves,aredifficult for students
to grasp,andthey requireasetof integrated
knowledgefrom previous courseson logic
andcomputerscience.

Thepeculiarproblemsto do with acquir-
ing andcraftingknowledgebasesaboutac-

tionsandchangeis anotherfactorasto why
the teachingof knowledge-intensive AI is
difficult. Studentsmay have encodeddy-
namicknowledgein otherpartsof the cur-
riculum: they representdynamic systems
informally in object-orientedanalysisand
design,or formally usingaprocessalgebra.
However, representingknowledgeaboutac-
tions and changefor automatedreasoning
purposespresentsmoreproblems.

The processof how knowledge is ac-
quiredandengineeredis not easyfor a stu-
dent to graspwithout practical experience
of the process. As is the casewith pro-
gramminganddesign,it seemsthat an in-
tegratedtools environmentthat allows the
studentto effectively apply the theoryin a
practicalscenariois desirable.This should
give thestudenta high level platformfrom
which to learn advancedconceptswithout
theneedto worry abouteditorsandsyntax.
From our experience,a useful tool to help
in the teachingof AI within thecomputing
curriculumshouldintegratea rangeof the-
ory taughtduringlectureswith theapplica-
tion of the theoryduring practicalclasses,
supportinga wide rangeof the AI curricu-
lum. Its interfaceshouldhave a familiar
look andfeel, andallw the studentto pro-
ducenon-trivial AI implementations.It is
also useful if the tools helps integrateAI
with other subjectareastaught at under-
graduatelevel. Traditionally AI hasbeen
taughtwithin practicalsessionsby the in-
troductionof declarative programminglan-
guagessuchas Prolog, Lisp and Haskell.
While theseprogramminglanguagescanbe
usedfor a wide rangeof AI topics, it is
not easyto lead studentsto build or inte-
grateadvancedAI functionsfrom the ba-
sis of a programminglanguage.The tutor
would implementAI algorithmsto expose
their workings,but knowledgeintensive is-



suessuch as domain modelling would be
harderto illustrate.

Herewe describetheuseof a tool called
GIPOfor teachingAI students.It hasbeen
usedsinceits creationin 2001 for knowl-
edge engineeringof AI Planning knowl-
edge.WearguethatGIPOmeetsthecriteria
in the paragraphaboutand helpsstudents
understandandintegrateaspectsof knowl-
edge acquisition, knowledge engineering,
automatedplanningandmachinelearning.
We show how the tool’s featuressupports
teachingand the student’s learningexpe-
rience,and helps integratethe theory and
practicein a rangeof AI andrelatedsubject
areas.

2. Overview of GIPO
GIPO 1 the ’Graphical Interfacefor Plan-
ning with Objects’ (Simpsonet al. 2001)
(pronouncedGeePo)is thenameof a fam-
ily of experimentaltoolsenvironmentspro-
viding help for those involved in knowl-
edgeacquisition, domain modelling, task
description,plan generationand plan exe-
cution. GIPOwasanoutputof thePLAN-
FORM project (Planform 1999), and has
beendemonstratedin severalmajorAI con-
ferences.GIPOwon theprizefor bestgen-
eral tool at the first internationalcompeti-
tion for knowledgeengineeringin AI plan-
ning, heldat Monterey, USA in June2005.
Threeversionsof GIPO - GIPO I,II, and
III areavailablefor downloadingfrom the
website. GIPO integratesa rangeof plan-
ning tools to help the userexplore the do-
main encoding,anddeterminethe kind of
plannerthatmaybesuitableto usewith the
domain.In particularit has:

� graphical tools and visual aids for the
input/display of objects, object classes
(sorts),predicates,constraints,states,op-
eratorschema,and tasks. Thereare fa-
miliar point and click, drag and drop
functionsto helptheuserbuild up a new
domainor reuseexistingcomponents.

� validationchecksfor consistency across
parts of the developing domain model.
Once operator schemahave been de-
velopedGIPO featuresa ’plan stepper’
which helpsthe userbuild up their own
solutionstoproblemsin akindof ’mixed-
initiative’ mode.

� residentplangenerationengines,andan
API for plugging in to third party AI

1http://scom.hud.ac.uk/planform/gipo

planners. A plan animator / visualiser
displaysaplanner’ssolutionto aproblem
in termsof theobjectswhichareeffected
by theplan. This canbesteppedthrough
by theuserto seetheeffectsof operators
onobjectsandtheirproperties.

A key designgoal in building the tool’s
interfacehasbeento allow the creationof
a specificationin termsof imagesthat de-
scribedomainstructureat a high level of
generality. The tool takes careof the de-
tail of thesyntaxof theunderlyingspecifi-
cation,makingit impossibleto constructa
syntacticallyill-formed specification. The
processof domainmodel developmenton
which this is basedis detailedin the litera-
ture,seereferences(McCluskey & Porteous
1997;Liu & McCluskey 2000)for morede-
tails.

3. Capturing Domain Structure
Studentslearn how to use GIPO in two
ways: Firstly, they caninvestigateandexe-
cuteoneof theseveralpre-engineeredappli-
cationsdomainsthatis suppliedwith GIPO.
Thestudentcanusetheseat an earlystage
to seethe resultof domainbuilding. They
areableto bind the modelswith a planner
of choiceanduseGIPO to solve planning
problemsand executethe solutions. Sec-
ondly, the studentcan use GIPO’s tutori-
als.Theseleadthestudentthrougha staged
methodof domaindevelopmentusing ap-
propriateexamples. This is a similar to
the tutorial materialwritten for theProtege
tool (Gennarietal. 2003)which introduces
theuserto DescriptionLogic.

Thecentralconceptionin domaincapture
is thatplanningessentiallyinvolveschang-
ing propertiesandrelationshipsof the ob-
jectsthat inhabit the domain. This appeals
to computingstudents’intuition andis con-
sistentwith their studiesin object-oriented
programmingand design. Knowledge is
structuredaroundobjectdescriptions,their
relationshipsandthechangesthey undergo
as a result of the applicationof operators
duringplanexecution(in contrastto thetra-
ditional literal-basedapproachusedin Plan-
ning languagessuchasPDDL (Ghallabet
al. 1998)). Thestudentidentifiesthekinds
of objectsthatcharacterisethedomain,and
organisesthem arounddistinct collections
of objects,which we call sorts, into a hi-
erarchy. Object instancesfor eachsort are
identified. Eachobjectinstancein a sort is
assumedto have identicalbehaviour to any



Figure1: Snapshotof theSortEditor

otherobjectin thesort. To assistin this el-
ementof the conceptualisationGIPO pro-
vides a visual tree editor (Figure 1). Do-
main checkingat this initial stageinvolves
enforcing the tree structureand requiring
that nodenames(for sortsandobjects)are
unique.

Thenext stepif for thestudentto specify
thesortsin thedomainby identifyingpred-
icatesthat characterisethe propertiesof a
typicalobjectof eachsortandrelationships
that hold betweenobjects. GIPO provides
an editor to definepredicatesby a process
of drag and drop from the sort treeprevi-
ously defined. Next, the studentspecifies
domaininvariants. Themostimportantin-
variantsare thosecharacterisingthe range
of statesthatanobjectof eachsortcanoc-
cupy. Theseform the basisof the static
validity checksthat can be carriedout on
thecompleteddomainspecification.For ex-
ample, if the sort representingthe physi-
cal entity is ’door’, and the predicatesare
closed,locked andunlocked, thenthe stu-
dentwouldusethetool to statethattheonly
possibleinterpretationsthatcanbetrueare:
lockedandclosed;
unlockedandopen;
unlockedandclosed

Any other combinations(eg open and
locked;or locked,closedandopen)areex-

cluded.Thecollectionof all suchstatesfor
the objectwill be suchthatat any instance
in timeexactlyonesuchdescriptionwill be
trueof theobject(seeFigure2).

When specifyingobject states,the pos-
sible unificationsof variablesof the same
sort or betweenvariablesbelongingto the
samepathin the sort treehierarchycanbe
restrictedusing a visual indication of uni-
fying variablesasshown in thefigure. The
studentselectsfrom a popupmenuhow an
individual variableis to unify with a target
variableandif thedecisionis thatthey must
bedistinct thena not equalsclauseis gen-
erated. This strategy for dealingwith the
unification of variablesis pervasive in the
GIPOtool set.

4. Capturing Domain Operators
The next stageof the knowledgeacquisi-
tion method,andmostdifficult taskfor the
student,is to specifyoperatorsrepresenting
domainactions.Operatorsin GIPOarecon-
ceptualisedassetsof parameterisedobject
transitions,LHS � RHS, wherethe LHS
andRHS arethe legal statedescriptionsof
the sort of the object parameter. An ob-
ject transitioncanhave differentmodalities
in an operator- normally it is necessary,
which meansthe LHS is a preconditionof
the operator, andafter the operatoris exe-



Figure2: Editor for SpecifyingObjectStateInvariants

cutedtheobjectaffectedwill bein thesitu-
ationspecifiedby a fully instantiatedRHS.
TheGIPOoperatoreditorhelpsthestudent
createa graphrepresentationof an opera-
tor wherethe nodesarethe LHS andRHS
statesof theobjectsortsinvolvedin theop-
erator. Eachsuchnodecontainsaneditable
statedefinition(seeFigure3).

While theuseof the ’OperatorEditor’ is
adequateto defineoperators,studentshave
difficulty primarily dueto the possibleco-
designationof variablesacrossthedifferent
nodespresentedto the user (althoughthe
underliningandright click mechanismde-
scribedin the stateeditor is used). Using
this manualoperatortool illustratesto the
studentthe difficulty of knowledgeformu-
lation,particularlyto dowith actions.

5. Capturing Domain Operators
using Induction from Examples

A semi-automatedknowledge acquisition
tool in GIPO is ’OpMaker (McCluskey,
Richardson,& Simpson2002): this helps
the user to createan operatorset simply
by providing examplesolution sequences.
The exerciseillustratessomeof the con-
ceptsof ’Learning from Examples’in ma-
chinelearning- in particularinductivegen-
eralisation.

To helpexplainOpMaker, weuseaplan-
ning domainthat is suppliedwith GIPO -
the’Lazy Hikers’domain.Two people(hik-
ers) go hiking and driving aroundregions
of the Lake District, with objectssuchas
tents,cars,regions, andactionssuchasput-
down, load, getin, getout, drive, unload,
putup,walk, sleepintent. They do one’ leg’
of a longcirculartrackeachday, asthey get
tired and have to sleepin their tent to re-
cover for the next leg. Their equipmentis
heavy, so they have two carswhich canbe
usedto carry their tent and themselves to
thestart/endof a leg. To useOpMaker, the
studentmustfirst createa ’partial’ domain
model,containingobjects,sorts,predicates
andstateinvariantsdescribingtheproblem
domain. Thestudentthenconstructs(via a
draganddropprocess)a solutionto a pre-
definedtask- for instancethefollowing is a
solutionto the taskof doingoneleg of the
circular track andbeingreadyfor the next
leg in themorning:

putdown
tent1 fred keswick;

load
fred tent1 car1 keswick;

getin
sue keswick car1;

drive
sue car1 keswick buttermere;



Figure3: OperatorEditorTool

getout
sue buttermere car1;

unload
sue tent1 car1 buttermere;

putup
tent1 sue buttermere;

getin
sue buttermere car1;

drive
sue car1 buttermere keswick;

getout
sue keswick car1;

walk
sue fred keswick buttermere;

sleepintent
sue fred tent1 buttermere

Thestudentis encouragedto think of each
action in terms of a sentencedescribing
what happens.For examplein the last ac-
tion we think of this as’Sueandfred sleep
in their tent in Buttermere’. Each‘action’
consistsof anactionidentifierfollowedby a
sequenceof objectsthattheactiondepends
onor changes.Fromtheinputof aplansuch
astheexampleabove,anda partialdomain
model, a full operatorset can be induced
with thetool (seeFigure4).

6. Student Learning Opportunities
From this stage in process,the students
learn the difficulty in acquiring knowl-
edge about actions, and how using ma-

chine learning techniquesone can poten-
tially avoid the needto hand craft action
knowledge. They can comparetheseac-
quisitionmethods:After OpMakerhaspro-
ducedthesetof inducedoperators,another
learning opportunity for the studentis to
comparethis set with the handcraftedset
suppliedwith GIPO.They canexplore the
problemsand limitations of learningfrom
examplesto do with convergenceof gen-
eralisations,theneedfor knowledgerefine-
ment and the importanceof ’good’ exam-
plesin learning.

Theconstructionof operatorsprovidesa
good opportunityto comparethe planning
modelwith work in formal specificationof
software. For example,many of our stu-
dentsusedthe’B-toolkit’ (B-Core(UK) Ltd
) to createsoftwarespecifications.Thepre-
and post-conditionversionof a GIPO op-
eratorandanoperationspecifiedin B have
greatsimilaritiesasthey bothspecifydeter-
ministic, instantaneousactionsin termsof
predicatedescriptions.

7. Validation in GIPO

Continuingthe analogywith formal spec-
ification of software, oncethe studenthas
built up an initial modelof the world it is
naturalto want to validateit. As in formal



Figure4: OpMaker InductionTool

specification,thissplitsinto internalvalida-
tion: checkingthemodelfor inconsistencies
betweencomponentparts,andexternalval-
idationcheckingthemodel’saccuracy with
respectto what is being modelled. With
tools such as GIPO, ’ local’ consistency
checkson nameuniquenessand hierarchy
definitionareautomaticwhenthesecompo-
nentsarebeingbuilt. Additionally, internal
validation includescheckson global con-
sistencythrough various forms of ’static’
validation. Most effective in GIPO arethe
checkswhich verify that operatordefini-
tionsdonotcompromisetheinvariants.

8. Dynamic Validation
The student has several opportunitiesto
learnaboutandcarryout ’dynamic’internal
andexternalvalidationresultingin the re-
pair of inconsistent,inaccurateor incorrect
knowledge.

� the reachability analysistool: after the
studenthasspecifiedstateinvariantsand
an operatorset, the studentcanusethis
tool to checkwhetherthe operatorsetis
sufficentto reachall statesallowedby the
invariants. The reachabilitytool can be
usedin conjunctionwith OpMaker: it can
indicateif the deducedoperatorsdo not
giveanadequatecoverage.This is shown

by theexistenceof definedstatesthatare
not referencedby any operators.

� theplanstepper: thestudentcandynam-
ically checkadomainis adequatelyspec-
ified againsta setof problemsby using
the plan stepper. The studentusesdrag
and drop to selectoperators,and pop-
up menusto instantiatethem,effectively
attemptingto solve their own planning
problemsusingthe model. Eachopera-
tor is appliedin thecurrentstateto gen-
eratethe consequentstate. The student
proceedsin thismannerto verify thatthe
domainandoperatordefinitionsdo sup-
port theknown plansfor givenproblems
within thedomain.Thestepperoperates
asamanualforwardplanner, with results
of eachobjecttransitioncausedby anop-
eratorshown graphically(seeFigure5).
Thistool is veryusefulfor checkinghier-
archical operators- that is thosethaten-
capsulateotheroperators.In Figure6 we
show a snapshotof theuseof thestepper
toexecuteplansinvovling hierachicalop-
erators.

� running planning engines: the student
can, of course,executeone of the sup-
plied plannerswithin GIPO on specified
tasks. Suchis the intractablenatureof
planningproblemsthathishasto becare-



Figure5: TheGIPOPlanStepper

fully controlledby the tutor and GIPO.
Dependingon the planner/ taskcombi-
nation chosen,the solution may not be
found for a goodperiodof time. GIPO
has its own planningengines,but third
party plannersareeasyto integrate(we
oftenusetheFF(Hoffmann2000)planer,
which was a past winner of the Inter-
nationalPlanningCompetition). After a
plannerhasreturneda solution, the stu-
dentcanstepthroughthe solutionusing
GIPO’s animatortool. This takesthere-
sultsof a plannerandproducesa graph-
ical representationof the object transi-
tionsusingthesamelayoutasthestepper.

We have outlined the main components
of GIPOabove - moredetailscanbefound
in the AI Planning literature e.g (Mc-
Cluskey, Richardson,& Simpson2002).To
enableGIPOto beusedasageneraldomain
modellingtool we have developedtransla-
tors betweenour internal languageandthe
planningdomainlanguagePDDL (Simpson
etal. 2000).TheAPI enablesexternalplan-
ningsystemsto interfaceto thetools,topro-
vide scopefor testingandfielding alterna-
tiveplanningalgorithmsto thoseinternalto
GIPO.

9. Using GIPO in Teaching and
Learning

GIPO hasbeenusedin the teachingof in-
termediateandfinal yearundergraduates,in
both introductory and advancedAI mod-
ules sinceits creationin 2001. It offers a
wide rangeof learningopportunitiesin AI,
throughknowledgeacquisition,knowledge
formulation,validationandmaintenanceof
domainmodels,inductive learningandau-
tomatedplan generation. Although num-
bersof studentgroups(typically 15-20)are
too small to make any statistical claims,
anecdotallyGIPOseemsto helpstudentsto
integrateAI knowledgelearnedin lectures,
andto reacha deeperlevel of understand-
ing of ’dry’ subjectmatteron for example
theacquisitionandengineeringof symbolic
knowledge.

Studentsaresupportedby anonlinethree
part tutorial, which introducesthemto the
subjectmatterin a stepby stepfashion,by
leadingthemto develop a simpleexample
domainmodel. Part oneof the tutorial in-
troducesthe ’flat’ model, whereoperators
are primitive and separate. Part two in-
troducesa hierarchicalmodel of plan op-
erators,which amountsto a principledap-
proachto HTN planning.Finally part three
introducesthe OpMaker operatorlearning



Figure6: UsingthePlanStepperin HierarchicalDomains

method. Whereasthe tutorials lead the
studentthroughthe featuresmethodically,
for learningabout specific featuresGIPO
has an online, hyperlinked user manual.
For thosestudentswho needto dig deeper
(for example final year project students)
GIPOalsohasalanguagemanualwhichde-
finestheunderlyingknowledgerepresenta-
tion language.

10. Conclusions

In this paperwe have illustratedtheuseof
theGIPOtool, andshown how it helpsstu-
dentsapplyAI theorythatthey havelearned
during lectures. Its interfaceandunderly-
ing languageusestheobjectmetaphorsim-
ilar to other tools that studentsuse in the
computingcurriculum. Studentsare able
to useit both to gain experienceof a wide
rangeof AI topics(knowledgeacquisition,
automatedplanning, learning from exam-
ples) and to obtain a deepknowledge of
topics in theseareas. For example,a stu-
dentmay learnaboutalgorithmsfor learn-
ing from examples,andrepresentationsfor
planningoperators,but without application
the knowledge is somewhat stale. Using
GIPO the student can use the OpMaker
tool to induceplanningoperators,thusboth
sustainingtheir knowledge of theseareas

andintegratingthe two together. Addition-
ally, we have arguedthat GIPO helpsstu-
dents see the commonalitiesbetweenAI
with othersubjectareas,helpingthemto in-
tegratenew knowledgewith otherpartsof
thecurriculum.

This year our final year undergraduates
will be using the award winning GIPO III
softwareon theAI module.Amongstother
innovations, this version has an interface
basedonobjectlife historiesThisformsan-
otherknowledgeacquisitioninput into the
tool (in the sameway asOpMaker). It al-
lows thestudentto entera diagramrecord-
ing the transitionsof objects,and it auto-
maticallycreatesdomainoperators.It also
allows the userto re-usepre-storedobject
patternsthat representtypical dynamicob-
jects. For example, Lazy Hiking domain
object behaviour can be derived from a
combinationof genericobjectswe call mo-
bile, bistateandportable(see (McCluskey
& Simpson2004)for details).
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