
CIA2326: Coursework
Formal Aspects of Computer Science

Background and Context

In safety critical applications of software systems it
is considered good practice to develop software rigor-
ously. This often means adopting some kind of “formal
method” to the software development process. One way
of ensuring that requirements are captured accurately is
to adopt an approach of trying to capture requirements
formally within a model, using for example a logic lan-
guage, and then animating and testing the requirements
model before system development. In this coursework
you are required to capture some requirements of a fic-
tional air traffic control system in first order logic, and
to animate that specification using the logic language
Prolog.

In an air traffic control system managing an air space,
such as the North East Atlantic, flight plans (called
‘Flight Profiles’) are logged with an Air Traffic Control
Officer (ATCO) a period of time before the aircraft is
due to enter that air space. At this time the system
must check that all logged flight profiles are mutually
conflict free.

Assume you are called in to create a set of require-
ments for a Flight Profile separation checking program
(a ‘conflict probe’). You learn that an aircraft’s Flight
Profile is a sequence of 2 or more segments points.
You decide to represent the name of a Profile with the
aircraft’s callsign, eg ba202, and the segment make up
of a Profile as a set of facts. For example, if ba202 is
made up of 3 segment points, it can be recorded as
follows:

belongs(ba202-1,ba202)
belongs(ba202-2,ba202)
belongs(ba202-3,ba202)

and another Flight Profile vgn902 is made up of 2
segment points, can be recorded as follows:

belongs(vgn902-1,vgn902)
belongs(vgn902-2,vgn902)

Further, each segment point is defined by

• a time (when the plane is due to fly over it), described
as a tuple t(X,Y), meaning Y minutes past X o’clock
on the 24 hour clock

• a flight level (fl), described as an integer X meaning
100*X feet above sea level

• a latitude (lat), described by an interger representing
degrees north, latitude,

• a longitude (long), described by an interger repre-
senting degrees west, longitude

• a speed measured in Mach units, where Mach 1.0 is
the speed of sound.

You decide to represent these as logical facts. For
example, the time, flight level, latitude, longitude and
speed of a segment point ba202-1 is be recorded as
follows:

time(ba202-1, t(8,23))
fl(ba202-1,370)
long(ba202-1,21)
lat(ba202-1,65)
speed(ba202-1, 0.9)

meaning that flight ba202 is intending to be at 65 de-
grees north, 21 degress west (somewhere over Iceland)
at 37000 feet at 23 minutes past 8 in the morning, and
flying at Mach 0.9. As another example you might
have a segment point of vgn902 represented as:

time(vgn902-1, t(8,23))
fl(vgn902-1,370)
long(vgn902-1,20)
lat(vgn902-1,65)
speed(vgn02-1, 0.85)

More examples of facts for Flight Profiles are given on
http://scom.hud.ac.uk/scomtlm/cia2326/airspacefacts1
After consulting Air Traffic Control Officers and
studying the rule books you gather the following re-
quirements of a ’conflict probe’ sub-system, concerning
the logic of separation criteria, as follows:

1. Two Flight Profiles x and y are in Conflict if there
exists a segment point xp of x and a segment point
yp of y which are not separated.

2. Two segment points are Separated if they are Ver-
tically Separated or Horizontally Separated or Time
Seperated.

3. Two segment points are Vertically Separated if the
Flight Level of one point is at least 2000 feet less than
or greater than the flight level of the other point.

4. Two segment points are Horizontally Separated if the
integer 2-D co-ordinate of one point - that is its (lat-
itude,longitude) - is not equal to the 2-D co-ordinate
of the other point.

5. Two segment points are Time Separated if the time
of one point is at least X mins different from the time
of another where X is the minimum time separation.

6. The minimum time separation (mts) between 2 seg-
ment points is at least: (a) 30 minutes when both
of the aircraft are flying at supersonic speeds and at
least one of the aircrafts’ profiles are not in level flight
(b) 20 minutes when both of the aircraft are flying
at supersonic speeds and both of the aircrafts’ pro-
files are in level flight (c) 10 minutes when one of the
aircraft is flying subsonic and one is flying supersonic
(d) 5 minutes if both aircraft are flying subsonic.

7. A Profile is not in level flight if there exists 2 segments
belonging to the profile which have different flight
levels.

Question 1

The definition of a Profile not being in level flight (cri-
teria 7 above) can be represented in first order logic as
follows:

∀p(
(∃s∃t∃ls∃lt belongs(s, p) ∧ belongs(t, p)∧
fl(s, ls) ∧ fl(t, lt) ∧ ¬equal(ls, lt))
→ notlevelflight(p))

(a) Systematically translate this wff into CLAUSAL
FORM.
(b) Combining the clausal form of (a) with the facts
about the Profile ba202 in file airspacefacts1, prove, us-
ing Resolution Refutation, that Profile ba202 is not in
level flight. To do this, produce a proof tree annotated
with the substititions you need at each step. To com-
plete your proof, you may also assume obvious facts
about equality (for example, ¬equal(380, 370)).
(c) Part of an automated validation check for specifica-
tions can be to check if definitions are ‘complete’. For
example, if we had a definition of the form:

precondition1→ q
precondition2→ r

then this is equivalent to checking that ‘precondition1
v precondition2’ is valid. Consider the definition of mts
in criterion 6: if it were possible to find an assignment
of truth values that makes each of the four precondi-
tions false, then in that case the system would fail to
find a value for mts, potentially causing an insecurity.
Using a truth table argument or otherwise, either show
the definition in criterion 6 is complete or find an as-
signment of T/F for individual conditions that does not
satisfy any of the preconditions.

Hand in: The clausal form of (a), the workings of
translating the wff into clausal form, the Resolution
Refutation tree showing substitutions at each resolu-
tion step for (b). For (c), hand in a textual argument
augmented with truth table(s) if used.

Question 2
(a) Criteria 1,2,3 could be translated into Prolog clauses
as follows:

conflict(P1,P2) :-
belongs(S1,P1),
belongs(S2,P2),
\+ seperated(S1,S2).

seperated(S1,S2) :-
vert_seperated(S1,S2).

seperated(S1,S2) :-
horiz_seperated(S1,S2).

seperated(S1,S2) :-
time_seperated(S1,S2).

vert_seperated(S1,S2) :-
fl(S1,X), fl(S2, Y),
(X =< Y-20 ; X >= Y+20).

In this manner, and using the insight from Question
1, use all of criteria 1 - 7 and the facts about Profiles
in file airspacefacts1 to create a Prolog program which

captures the logic of this part of the separation stan-
dard. Try to write your program to reflect the logic of
the requirements. Test out your Prolog program using
the Profile examples given in the set of examples in file
airspacefacts1. Make up another Profile of your own
called ”myplane”, and use it in the tests.
(b) Now upgrade your program to perform the following
function: it inputs a LIST of profile names, and outputs
ALL pairs of profiles in the list that are NOT separated.

Hand in: Listings of your Prolog code. Screenshots
for parts (a) and (b), showing tests (hard copy + elec-
tronic copy).

Question 3

(a) The file http://scom.hud.ac.uk/scomtlm/cia2326/atclogic
contains some of the actual formalised separation cri-
teria. Compare the actual criteria in this file, with
the criteria given above in this coursework. Write a
short report describing the differences. (b) The file
http://scom.hud.ac.uk/scomtlm/cia2326/atcprolog
contains Prolog code that has been automatically gen-
erated from the criteria. Comment on the challenges
involved in automatically generating such a Prolog
program from these criteria. You may consult the
following publication for assistance (pages 20-22):
http://scom.hud.ac.uk/scomtlm/Artform/pubs/spe paper.pdf
Hand in: A short report of approximately 800 words
addressing the two issues above (hard copy).

Marking Criteria

The coursework assesses outcomes 19.1.1 and 19.2.1-
19.2.3 from your module specification. It makes up 40
per cent of your 20 credit module.

Approximate Marks Breakdown: 1: 30 per cent,
2: 45 per cent, 3: 25 per cent.

To calculate your mark the following marking cri-
teria will be used:

• the correctness of the clausal form translation, proof
tree and annotations, and arguments in Question 1,

• the accuracy and quality of the code with respect to
the requirements, and the quality and correctness of
the tests you perform.

• the insights, clarity, and cogency of your report in
response to Question 3.

This coursework must be undertaken individ-
ually. The course work will be handed out dur-
ing week 6, 2010. The deadline for handing in
the work is Thursday 4pm December 16th 2010.
The marked work will be handed back by the
second lecture of Term 2.

