
Helping End Users Modify Procedures by Instruction

Jim Blythe and Varun Ratnakar

USC Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292
{blythe,varun}@isi.edu

Abstract
Many useful planning applications are handled by plan
execution tools, such as PRS, that keep track of several
interacting goals and tasks, and different ways to expand
them, using procedure definitions. I describe Tailor, an
implemented tool to help end users modify the procedure
definitions used in these tools by interpreting instructions
given as short sentences. This approach allows a natural and
flexible interaction style in which users can refer to tasks by
name or by their arguments, may skip some of the details of
a conditions and use synonyms. Tailor uses search to find
task modifications that match the user’s input, warns about
potential problems that the modifications may introduce and
suggests fixes. We conducted preliminary tests using Tailor
to modify domains drawn from the eHow web site, applying
modifications posted by readers as ‘tips’, with promising
results.

Introduction
We consider the problem of allowing end users, who are
not experts in planning or knowledge engineering, to
modify an existing domain for a plan execution system
such as PRS [Georgeff & Lansky 89] or SPARK [Morley
& Myers 04]. This task fits within the “knowledge
refinement and maintenance” category of the competition.
In many ways, this is a simpler task than creating an
entirely new domain, yet end users still face a number of
challenges. They probably will not know the precise terms
used for tasks, concepts and relations in the domain
representation, even if they are experts in the domain.
They may not know how a change to one procedure
definition may affect the system’s overall task performance
when many procedures are chained together. Even the
syntax of the procedures and domain relations can be
daunting.

Tailor helps end users modify procedure definitions by
giving instructions as short sentences, for example “you
don’t need authorization if it costs less than $2000”, or
“email my manager before placing the order”. Tailor maps
the input sentence to a set of plausible modifications by

Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

first identifying it with one of a set of modification
templates, for example “make substep ?s be conditional on
expression ?e”, and then filling out values for the
parameters of the template by search. The process is
interactive: the system shows the result of the modification
that was most likely intended, allowing the user to fine-
tune the interpretation or choose an alternative. Tailor also
analyses the effect of the modification using a symbolic
evaluation of a given top-level goal. If the procedure
modification may remove a step that asserts a needed fact
in the database, for example, Tailor gives a warning and
makes suggestions for different ways to fix the problem.
However, the user can always dismiss the warning, since
the problem may never arise in ground applications.

Tailor’s instruction-based approach is very flexible. It
allows Tailor to be embedded in applications that
communicate with the user in different ways, for example,
using dialog or speech understanding as well as in more
traditional interfaces. It also allows users to refer to tasks
and conditions even if the precise terms are not known,
allowing Tailor to hypothesize the modification by
matching synonyms and using search. The research
contributions of our work include defining a sufficient and
concise set of instruction templates, efficient search
techniques to generate plausible modifications and analysis
techniques for PRS-style plan execution systems. Tailor is
implemented in java and communicates with a separate
plan execution system through the Open Agent
Architecture [Martin et al. 99]. It is designed to be used
with SPARK, but is applicable to any PRS-style system. In
the next section we describe a scenario where Tailor is
used and step through the techniques involved. The
following section briefly describes an empirical evaluation.
Finally we discuss the approach and planned future work.

Scenario
Consider a process description for purchasing equipment
such as a laptop within a company, including the following
steps: the user identifies the laptop to be purchased, then
an initial purchase request form is generated and submitted
to two different line managers for authorization. When this
is received, the order is placed with the purchasing
department for completion. The tasks are defined

hierarchically in SPARK, allowing the tool to track the
progress of each task, for example tracking the form as it is
emailed to the managers and then the purchasing
department. Figure 1 shows the top level procedure
definition; the lower level procedures are defined in the
same way. Figure 2 shows the overall process as Tailor
presents it to the user. This is automatically generated from
the Spark definitions, along with action and predicate
templates that show how to generate the text, and how to
refer to variables once they are bound. An example
template is shown in Figure 1.

{defprocedure "Buy Laptop"
 cue: [do: (purchase $item $criteria)]
 precondition: (= laptop $item)
 body:
 [context: (and (User $user)
 (Called $user $name))
 seq: [do: (find_laptop $item $crit $seln)]
 [do: (complete req_form $form $seln)]
 [do: (obtain_authorizations $form $seln)]
 [do: (place_order $seln)]
 [context: (= (list_index $seln 0) $pseln)
 do: (print "Purchase of %s completed"
 [$pseln])]]}

{defActionTextTemplate
 (get_authorization $manager $form)
 "Get authorization on $form from $manager"}

Figure 1. Procedure definition for laptop
purchase

Suppose that the process has been used successfully until,
for the first time, the purchase cost is below $2000. At this
level, authorization is not required, but the planning tool is
unaware of this and makes a request for authorization as
part of its plan. The user notices the problem and modifies
the planning knowledge by typing the sentence 'You don't
need authorization when the cost is below $2000'. Tailor
takes this sentence and relates it to its process description.
It guesses that the word 'authorization' probably refers to
the step 'obtain authorization from managers' and not its
substep 'get authorization from the first manager'. It
guesses that 'cost' probably maps to '(computer-Total-Price
$laptop)' based on the predicates in its knowledge base and
the variables that are bound at this step in the plan.

Tailor therefore proposes to make the step conditional on
this value being less than $2000. In Figure 3, the proposed
change is presented to the user. A summary of the change
is provided in the ‘Summary’ panel, and the new definition
is shown in the ‘Procedure Description’ panel, with the
new condition highlighted. The user can override Tailor’s
guesses and select alternatives if desired. The effects of
this change go beyond the current plan. Since the
procedure definition will be changed, all future plans in
situations that match this condition will also be changed.

Tailor also reasons about the consequences of making this
change. The step to send the request to the purchasing
department has a precondition that authorization has been
received, so it may fail when the 'obtain authorizations'
step is skipped. Tailor can't know for certain that it will
fail, because authorization might already be in its database,
but it warns the user that this is a potential problem and
suggests three ways to handle it, from which the user
chooses to ignore the authorization precondition when the
cost is below $2000 and send the request to purchasing
anyway. At this point, the modified process description can
be used in Spark to produce the desired result.

Approach
Tailor interprets the instruction in three steps: mapping the
instruction to a template, filling in the roles of the template
and reasoning about the effect of the changes.

Mapping the instruction to a template
Tailor currently considers three types of modification: (1)
adding a new substep into a procedure body, (2) modifying
the parameters of an existing step, e.g. “use screws instead
of nail to fix planks to the deck” and (3) modifying the
conditions under which a substep is performed, e.g. “only
sand the planks if they are visibly gouged”. Each category
is modeled by a template in Tailor that holds information
fields that must be filled using the words in the sentence.
For example, the template for adding a new step has two
information fields: the step to be added and optionally
another step used as a temporal reference point. The
sentence in the scenario, “You don’t need authorization
when the cost is below $2000”, matches the template for
modifying conditions, which has two fields: the step and
the condition. Templates also contain information on how
to provide feedback to the user about the proposed
modification.

To link a user’s sentence to the appropriate template, we
first use an off-the-shelf parser, JavaNLP [Klein &
Manning 02] and then use declarative rules to match
keywords and elements in the parse tree. The rules also
determine how words in the sentence are assigned to
different fields in the template. The example sentence is
linked with the condition modification template, and the
word “authorization” is assigned to the ‘substep’ field
while the words “the cost is below $2000” are assigned to
the ‘condition’ field. More details for this and the
subsequent steps can be found in [Blythe 05].

Figure 2. Tailor’s display of the initial process description

Figure 3. Tailor’s summary of the proposed modification includes a warning and suggested remedies

Mapping sentences to hypothesized changes
Once the words of the sentence are assigned to each field,
they are used to map the sentence into a well-defined,
plausible modification of the original process description.
Template fields that refer to existing steps are matched to
the steps in the current process description and the closest
match is usually returned. For fields that refer to
conditions, Tailor searches for compound expressions built
from terms in its domain knowledge base that both match
the words in the field and use variables that will be bound
when the relevant step is reached. In both cases, Tailor
uses WordNet synonyms [4] to increase the breadth of
matches found and will match words from either the
formal expression definition or the text-generation
template.

For example, the sentence fragment ‘the cost is below
$2000’ is mapped to
 (and (Computer_Total_Price $seln $x)
 (< $x 2000))
A phrase such as 'the cost' in the example sentence
fragment may refer to an object (as the syntax implies), or
a variable, or a slot of another unmentioned object (as is
the case here). The user may not know which is the case,
since it depends on decisions made during the
implementation of the domain model. When unstated
objects are involved, Tailor must identify them in order to
provide a well-defined modification.

We use a dynamic programming approach over a graph of
data types to build a ranked list of plausible conditions
[Blythe & Gil 04]. Tailor picks the highest-ranked element
of the list and presents this modification to the user, but
also allows the user to select a different modification. The
graph is built before the interactive session. When search
begins, the relevant step in the process is first identified,
and used to build the list of variables that the expression
can refer to. Each variable is added to the node
corresponding to its type, for example, the variable ‘$seln’
is shown under the node ‘Laptop’. Constants mentioned in
the expression are also added to the appropriate node.

Reasoning about the effect of changes
A plan execution system typically comprises a highly
interconnected structure of tasks and methods in which
constraints and information are passed between tasks.
Changes suggested by the user are likely to have
consequences on the system’s overall behavior that require
changes to other procedure definitions, some foreseen and
some unforeseen by the user. Tailor reasons about the
overall problem-solving behavior through a symbolic
evaluation for one or more top-level goals in order to warn
the user of potential problems and suggest fixes.

For example, Figure 2 shows a warning and a choice of
remedies that are generated after the modification from the

initial scenario is identified and applied. Step 4 is
highlighted in red, and a warning button is placed next to
it. When the user clicks on this, it shows that this step,
which places the final order for the laptop, has a
precondition that authorization is received. This condition
may not be true if the obtain_authorizations step
is skipped, so the plan may fail. Tailor offers three possible
fixes – (1) mark authorization as achieved in the current
situation, (2) relax the precondition, so that authorization is
not tested when obtain_authorizations is skipped,
or (3) don’t execute step 4, placing the order, under these
conditions. The second choice matches the semantics of
‘authorization’ in this case, but sometimes the other
choices are preferable. Tailor’s method for finding
problems is general, but the remedies are hand-chosen for
each type of problem.

Since Tailor is working with a symbolic evaluation of the
plan, it cannot be certain that an issue it detects will be a
real problem at runtime. For example, a database might be
available that provides the needed information. We use the
following rule of thumb to provide warnings that are likely
to be relevant: rather than analyze potential problems in a
single evaluation, we compare the evaluation traces before
and after the modification and only make warnings about
issues that are introduced by the modification. In the
scenario example, the precondition interaction is
introduced when the step to obtain authorizations is made
conditional, and so the warning is generated.

Empirical evaluation
We aim to verify that users who are not familiar with
Tailor can modify realistic process descriptions, where
neither the initial process nor the modifications are chosen
by us. To do this we used data from eHow1, a popular
website with thousands of descriptions of how to perform
useful tasks, in categories such as home repair and health
care. Many of the advice pages on eHow can be viewed as
process descriptions in text form. These pages often have
links to tips from users, which can take the form of
modifications to the processes. We asked subjects to
translate some of these modifications for Tailor in process
models that were hand-built to capture the advice pages.

We estimated how many of the user tips on eHow could be
captured by Tailor. Within a subset of 200 process
descriptions focusing on structural home repairs, 45 were
found with user tips that modified the process. Of these, 28
specified extra steps to be added to the process, 17
discussed changing equipment, e.g. using screws rather
than nails, 6 suggested adding or modifying conditions
under which steps in the process were applied and 6
discussed other aspects, such as refining the way substeps

1 ”eHow.com – Clear Instructions on How to Do
(just about) Everything”

are performed. We intend to cover the first three
modification types in Tailor. At the time of testing, Tailor
could be used to add or modify conditions on steps and we
only picked examples of this type.

Five subjects were trained on modifications to Tailor's
domain model for a health domain and then asked to make
3 modifications based on two user tips in a home repair
domain. The modifications varied in difficulty and in the
required interaction with Tailor. For example, the
modification to skip the sanding steps required applying
the same condition to two steps. A method for doing this
had been demonstrated during training.

Four of the five subjects were able to complete all the
modifications successfully, although one subject needed
two general hints: to use shorter sentences if Tailor is
confused and frame sentences to avoid a certain parsing
error. The fifth subject completed two of the three
assignments successfully. The subjects tried different
sentences until Tailor understood correctly. We define
each time that a user entered an alternative instruction for a
modification, rather than fine-tuning the instruction
through provided interactions, as a separate ‘attempt’ at the
modification. Figure 4 shows the cumulative number of
modifications made by all subjects within a given time
period on the x axis. The steep initial curve shows that
most modifications were made swiftly, with 11 of the 14
taking less than 6 minutes each.

Figure 4. The cumulative number of modifications

completed by a given time.

Discussion
Tailor is a tool for task modification by instruction that
follows three basic steps: (1) recognize the kind of
modification the user intends, (2) map the sentence into
one or more plausible, syntactically valid modifications,
and (3) detect potentially unintended consequences of the
modification, warn the user and suggest remedies. Our
preliminary evaluation of Tailor used process descriptions
and user-supplied modifications from the eHow web site,
to demonstrate that users can translate modifications for

Tailor to apply in several new domains. The tool is also
undergoing tests as part of an office assistant, managing
equipment purchase, travel reimbursement and similar
tasks.

Tailor’s has a modular implementation that allows
templates for new kinds of instructions to be added
relatively easily. Similarly, support for different action
languages, including a subset of PDDL, could be provided
without major alterations. We believe that the techniques
used in Tailor can also be applied to HTN and subgoaling
planning domains, but this would require a more extensive
revision of the template set, the problems detected and
their remedies.

Task learning by instruction is a promising way to help
users make modifications to knowledge about actions that
has been studied relatively little recently. It allows a more
direct description of the steps to change and the relevant
conditions than pure example-based approaches, but frees
the user from some implementation decisions by putting
some of the burden onto the task learning system. While
interpreting a user’s instruction in a less constrained
context would be beyond the state of the art, here we
exploit the knowledge that the instruction is a modification
to a plan execution domain that is understood by the tool.
This constrains interpretation to a small number of
templates, each of which has fields whose values are
bounded by the current plan and the domain procedures,
objects and relations. The interactive nature of the tool also
allows the user to correct mistakes in interpretation.

One of the most closely related pieces of work is that of
Huffman and Laird on Instructo-Soar and related agents
[95]. These agents receive instructions from users about
how to achieve a task that is currently being executed, and
use situated explanation to reason about the advice in the
context of this task. Tailor reasons about an abstract
process description, rather than one that must be situated in
a particular task, and does not assume enough domain
knowledge to support explanation of the advice. Our work
in Tailor on recognizing user intent and mapping to well-
defined modifications is novel.

We are currently working to show the sufficiency of a
given set of instruction templates for the modifications that
are syntactically possible in a given planning system. This
can be used to demonstrate theoretical completeness in a
system like Tailor. We will also expand the experimental
results as Tailor’s scope increases. A promising direction
of research is to combine instruction-based approaches
with programming by demonstration [Liebermann 01],
either to improve the interpretation step based on
examples, or to begin with an example but fine-tune the
modification through instruction. We intend to explore this
direction in the coming year.

Acknowledgments
We gratefully acknowledge discussions with Yolanda Gil,
Jihie Kim, Tim Chklovski, Karen Myers and others. This
material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA), through
the Department of the Interior, NBC, Acquisition Services
Division, under Contract No. NBCHD030010.

References
[Blythe & Gil 04] Blythe, J., Gil, Y., Incremental
Formalization of Document Annotations through
Ontology-based Paraphrasing, in Proceedings of WWW ’04
(New York, NY, June 2004)

[Blythe 05] Blythe, J., Task Learning by Instruction in
Tailor, Proc. Intelligent User Interfaces 2005 (IUI 05)

[Georgeff & Lansky 87], Georgeff, M. and Lansky, A.,
Reactive Reasoning and Planning, Proc. AAAI 1997

[Huffman & Laird 95] Huffman, S. and Laird, J., Flexibly
Instructable Agents, Journal of AI Research, 3, 1995

[Klein & Manning 02], Klein D. and Manning, C. Fast
Exact Inference with a Factored Model for Natural
Language Parsing, in Proceedings of NIPS ’02 (2002)

[Liebermann 01] Liebermann, H., Your Wish is my
Command, Morgan Kaufmann, San Francisco, 2001

[Martin et al. 99], Martin, D., Cheyer, A. and Moran, D., A
Framework for Building Distributed Software Systems,
Applied Artificial Intelligence vol 13, number 1-2, pp 91-
128, January-March 1999

[Morley & Myers 04], Morley, D. and Myers, K. The
SPARK Agent Framework, in Proceedings of AAMAS
’04 (New York, NY, July 2004)

