
The itSIMPLE tool for Modeling Planning Domains 

Tiago Stegun Vaquero
1
      Flavio Tonidandel

2
        José Reinaldo Silva

1
 

 
1
Escola Politécnica – Universidade de São Paulo  

Design Lab. – PMR – Mechatronic and Mechanical Systems Department - São Paulo, Brazil 
 

2
Centro Universitário da FEI 

IAAA – Artificial Intelligence Applied in Automation Lab - São Bernardo do Campo, Brazil 

Email: tiago.vaquero@poli.usp.br;  flaviot@fei.edu.br;  reinaldo@usp.br 

 

 

 

Abstract 

A graphical interface is presented for the modeling of 
planning environments where an integrated tool permits the 
user to export the planning model to different representation 
languages such as PDDL or XML. The application uses an 
UML model to introduce a planning domain as a first step, 
followed by a step where a representation in Petri Nets – 
automatically translated from UML - is used to validate its 
static and dynamic behavior. A preliminary version of a 
software tool called itSIMPLE is presented which can 
manage the initial modeling on UML extended model and 
export the model to PDDL or Petri Nets using XML as 
internal language.   

Introduction   

The knowledge engineering has received much attention in 
the planning community nowadays. One reason for that is 
the increased demand to create and validate more complex 
and real planning domains. 
 That is a suitable situation to introduce a tool that helps 
the knowledge acquisition, permits the validation of static 
and dynamic behaviors, and improves the portability 
between planning systems and real world domains. Some 
effort towards this kind of tools has appeared in the last 
years. One example is the GIPO (Simpson et al, 2001) 
software interface that works with an object-oriented 
approach and performs the analysis and validation of 
domains. 
 In this work we focus in the use of an integrated and 
portable tool that uses UML (Unified Modeling Language 
(D’Souza and Wills 1999)) as a modeling language for 
planning domain; the XML (Extended Markup Language) 
(Bray et al, 2004) acts as an internal language for 
compatibility with other representations, including PDDL 
(Fox and Long, 2003), and the Petri Nets (Murata 1989).  
 We aim to improve this integrated tool, called itSIMPLE 
(Integrated Tools Software Interface for Modeling 
Planning Environment), into a new environment that 
permits the static and dynamic validation of real domains 

                                                 
Copyright © 2005, American Association for Artificial Intelligence  

 (www.aaai.org). All rights reserved. 
 

for planning. The main feature of itSIMPLE is to manage 
well-known modeling concepts and good practices that 
increase the portability of real world domains and facilitate 
its conversion to a planning domain. 
 Section 2 presents some details and support for the use 
of each particular tool in itSIMPLE software, as well as a 
brief explanation of how to use them. Section 3 shows a 
simple example and some screenshots of its interface. 
Finally, section 4 analyzes the results and goes to 
conclusion.   

The itSIMPLE software 

Focusing on the portability among modeling languages 
used in industries and in planning environments, we 
propose an integrated tool called itSIMPLE that has the 
general structure depicted in Figure 1. 
 
 
 
 
 
 
 
 
Figure 1 – The structure of the integrated tools used by 
itSIMPLE 
 
There are other tools to interface different representations 
for planning problems or in general. itSIMPLE intends to 
be a tool that inserts plan domains in the context of general 
problem solving, where the first steps are considered of 
great importance to the success of the project. Therefore 
the idea incorporated in the software tool is to have a 
disciplined process of elicitation, organization and analysis 
of requirements, before the choice of a planner. The change 
between representations are faced even for convenience (as 
it happens in the use of PDDL) or to perform a formal 
analysis, in Petri Nets for instance. 
 
The proper way to activate a sequence of representations 
such as (UML, XML and PetriNets) is described below. 

UML Model 

Petri Nets 

PDDL 

XML File 



Why UML? 

We believe that most knowledge engineers in several 
application areas are somehow familiar with UML 
language. Besides, there are many planning applications 
described in UML models, like (Scheetz et al. 1999). This 
fact, besides the suitability of UML to make a first model 
(tracking requirement specifications) (Silva and Santos, 
2004) turn it in a good choice. 
 In fact, if the planning community intends to build a 
bridge over the gap between real applications and planning 
simulation domains, it is important to have some flexibility 
in modeling languages used by both sides to model their 
applications. That is why we propose the UML language.  
 UML is an object-oriented language based on diagrams, 
such as class diagram, state chart diagram and object 
diagram. The objects and classes are linked by 
associations, aggregations and compositions. With all these 
features the planning domains can be represented and 
modeled.  
 The itSIMPLE permits to model planning environments 
in UML by defining a general structure composed by 
Agents, a domain Environment and a Planner. Agents 
change the arrangement of objects which compose the 
environment in other to go from an initial state to a goal 
state. The Planner just plans a sequence of actions to make 
the changes. These three elements are in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 – Elevator domain modeled in UML 
 

The class Planner controls all Agents and interacts with the 
Environment through sensors. Since Agents belong to the 
Environment, there is an aggregation association between 
Environment and Agent. The multiplicity 1 to 1.* attached 
to this association means that a single Environment can 
have one or many Agents. The class Planner has two 
attributes by default: init, representing the initial state of 
the problem, and goal representing the goal state. It has 
also default methods called: check-preconds which checks 
an action pre-conditions; apply-postcond which applies 

actions post-conditions, and plan which plans the sequence 
of actions to be applied in order to change states from 
initial state to the goal state.   
 It is also possible to define methods and global variables 
that control a plan quality. For example, in Depots domain 
the class Planner must have a new attribute called fuel-cost 
and a new method called minimize(fuel-cost). After 
defining the global variable fuel-cost in the Depots domain, 
the post-condition of the action drive must change the value 
of this variable. A good example of these expressions 
would be: every time that the Truck is driven, using the 
action drive, the action must increase the variable fuel-cost. 
So the expression could be: Planner.fuel-cost  += 10. 
 In a class diagram, the objects have attributes that 
correspond to nouns followed by possessive phrases, such 
as “the capacity of the plane” or “the load limit of a truck”. 
They can also correspond to some characteristics that 
represent the object state, such as “the block is clear” or 
“the truck is empty”. 
 Some attributes are related to associations. For instance, 
some cities are connected to each other by roads which 
distances are known. There is an association called, for 
example, “road connected” which has multiplicity 1 to 0.* 
(i.e., one city can be road connect to none or many cities) 
and we have an attribute attached to it that could be called 
distance.  
  Agents can change the planning domain state by 
performing actions. Each agent can have a set of actions 
that it can perform in the domain. In the Graphical 
Specification, dynamic classes represent those objects 
which changes state during time. It is necessary to have one 
state chart diagram for each dynamic object. 
 Preconditions are specified in brackets [pre] and can 
compare attributes of the same class or some associations. 
The Effects are specified in /pos and they can group Proper 
effects (those that affect the Agent that performs the 
action), Direct Side Effects (those that affect other objects 
directly) and Indirect Side Effects (those that affect objects 
indirectly, as a side effect). 
 Each action transforms one state (S1) into another state 
(S2) in the diagram. In the classical view, attributes of S1 
state compose pre-conditions and the delete list of the 
action, while attributes of S2 contribute, together with /pos 
specification, to compose the addition list of the action.   
 In UML, it is also possible to model invariants. Some 
attributes can keep their values constant or have their 
values derived from other attributes. UML can also 
represent association invariants, precondition invariants 
and invariants effects.  
 Finally, a planning problem can be modeled as a 
snapshot of the initial and goal states. A snapshot is a 
picture of a specific time. 

Why XML? 

It could be argued that a new software interface for 
modeling domains in UML language is not necessary, since 
there are many other commercial tools that accomplish the 
same task. However, each one has its own file specification 



for saving UML information, what would demand a 
specific translator to each new representation used to 
analyze the planning problem.  
 itSIMPLE software uses a XML specification to save the 
UML model in a file. This characteristic permits any 
internet browser or almost any developing computer 
language to read the file.   
 Following the principle to make our tool portable and 
regular as much as possible, XML files that are the output 
from the UML interface can be transformed directly to any 
other representation such as Petri Nets (using PNML 
library) or PDDL (using a proper prospective PDML 
library).  
 In XML files, everything is organized as a tree of 
diagrams, classes and attributes. There are some labels 
called ID that identify each node of the XML tree, what 
permits the specification of the associations and relations 
through these ID numbers. 

Why Petri Nets? 

The validation of the static behavior of domains is very 
important. However, it is not enough to provide a complete 
domain analysis. Besides static behavior, there is the 
dynamic behavior of the domain. 
 Petri Nets, or Object-oriented Petri Nets, can provide a 
dynamic model of the planning environment in order to let 
the user to analyze dynamic behavior and also extract some 
important features about the use of certain heuristics.  We 
also hope that with the Petri Nets model we can extract 

enough information and patterns to decide which heuristic, 
or which planning technique, can be used in each domain. 
  In addition, the Petri Nets are also widely used in 
industry for modeling manufacturing process and it can be 
useful to approximate the manufacturing area to planning 
community. 
 Our software intends to provide a both way translation 
between Petri Nets and XML. It means that some Petri 
Nets models can be exported to XML file and, 
consequently, to the UML model. 
 Thus, a generic planning system, designed to read UML 
modeled domains could also be able to read Petri Nets 
models of a manufacturing or industrial processes, what 
could approximate general planning techniques to real 
world problems. 

Screenshots of the itSIMPLE 

itSIMPLE software has a friendly interface with easy and 
intuitive commands and configuration. 
 Figure 3 shows itSIMPLE software modeling a Logistic 
domain in UML language. Figure 4 shows the same domain 
described in XML specification and Figure 5 shows its 
translation to PDDL language. 
All screenshots are interconnected and can be accessed any 
time by a simple click on the bottom of the screen. In the 
future, features like domain validation and analyses using 
Petri Nets will be available. 

 

Figure 3 – Screenshot of a Planning UML model in itSIMPLE software 



 

 
Figure 4 – Screenshot of XML file 

 
Figure 5 – Screenshot of the domain exported to PDDL 



Domain sample using itSIMPLE 

This section presents a well known model of a classical 
planning domain, the Blocks World, using itSIMPLE. The 
preliminary blocks world model is constituted by UML 
diagrams. The first step follows insights from Naked 
Object approach (Pawson and Matthews, 1999) where 
existing entities are discussed and modeled like classes as 
well as their relationship (associations), operators and 
attributes. To model these classes using itSIMPLE, the 
user must double-click on a class diagram on the tree view 
to open the diagram and to start dropping some classes 
and associations on it. Attributes, operators and 
associations properties are defined at the Element 
Property panel. The resulting Class Diagram is showed in 
Figure 6.  

 
Figure 6 – Blocks domain modeled in itSIMPLE 

 
A State Chart Diagram is necessary to model no static 
entities (in this case Block and Hand are no static classes). 
Again, a double-clicking on the tree view node diagram 
that represents state chart diagram allows the user to start 
dropping states and actions in order to model a 
preliminary dynamic behavior. The itSIMPLE just permits 
to specify in the State Chart Diagram those actions that 
were previously defined as operator in the Class Diagram.  
Since the Blocks World domain example has two dynamic 
classes, there are also two State Chart Diagrams in the 
model. Figure 7 shows the Hand State Chart Diagram. 
 

Figure 7 – Hand State Chart Diagram modeled in 
itSIMPLE 

 

When Class Diagram and all State Chart Diagram are 
ready, the next step is to model the problem as an instance 
of the domain. In order to model a problem, the initial and 
the goal state must be specified in Object Diagrams. 
These diagrams are built by dropping and naming objects. 
Each object has its class which describes its features. 
When two objects are associated, itSIMPLE checks in the 
Class Diagram all possible associations between them; 
chooses the first possible association to be the current 
association and lists all possible associations in order to 
allow the user to change the current association 
established. The following figure shows a snapshot 
(initial) from Blocks World domain where there are three 
blocks, one table and one hand. Here, C is on B which is 
on A. Block A is on table and hand Hand1 is empty. 

 
Figure 8 – Snapshot-init from a sample problem of 

Blocks World domain 
 
Since the model is created, it can be saved as a XML file. 
UML can be easily translated to XML in many ways. One 
example, which is used by itSIMPLE, is showed as 
following. Each diagram is a tag in XML representation. 
The Class Diagram can be described:  
 
<diagram name=”BWDiagram” type=”ClassDiagram” id=”1” >  

 
where the type attribute indicates the which UML diagram 
it is and id is used by itSIMPLE to search information by 
a fast fashion way.  
 Each diagram tag has classes and associations as sub-
tags. Each class can have attributes, operators and 
generalizations as sub-tags.  An example: 
 
<class name="Table" id="1.7"/> 

<class name="Block" id="1.8"> 

 <attribute name="clear" type="Boolean" id="1.8.1"/> 

</class> 

<class name="Hand" id="1.9"> 

 <attribute name="handempty" type="Boolean" id="1.9.1"/> 

 <generalization element-type="class" element-id="1.2"  

  id="1.9.2"/> 

 <operator name="stack" id="1.9.5"> 

  <parameter name="h" element-type="class"  

      element-id="1.9" id="1.9.5.1"/> 



  <parameter name="x" element-type="class"  

           element-id="1.8" id="1.9.5.2"/> 

  <parameter name="y" element-type="class"  

    element-id="1.8" id="1.9.5.3"/> 

  <parameter name="t" element-type="class"  

   element-id="1.7" id="1.9.5.4"/> 

 </operator> 

 <operator name="unstack" id="1.9.6"> 

  <parameter name="h" element-type="class"  

   element-id="1.9" id="1.9.6.1"/> 

  <parameter name="x" element-type="class"  

   element-id="1.8" id="1.9.6.2"/> 

  <parameter name="y" element-type="class"  

   element-id="1.8" id="1.9.6.3"/> 

  <parameter name="t" element-type="class"  

   element-id="1.7" id="1.9.6.4"/> 

 </operator> 

</class> 
Each operator has its own parameters that are linked to the 
diagram objects by element-type and element-id tag 
attributes.  
 Association nodes have usually two sub-tags that 
represent the association ends. Each association end holds 
multiplicity, role name, navigation and type. The 
navigation tag attribute is a boolean value that indicates 
the direction of the association. The false value indicates 
the origin of the association and true value indicates its 
target.  
 State Chart Diagram has some sub-tags such as actions 
and states. Actions are the operators defined in class 
diagram so they have a reference to those operators as 
well as they have references to states that they are linked 
to. The following XML code shows two states and the 
action “stack”. 
<state name="h holding x" condition="h.holds = x; h.handempty 

   =false" id="5.1"/> 

<state name="h empty" condition="h.handempty = true"  

  id="5.2"/> 

<action element-type="operator" element-id="1.9.5" 

   precondition="" postcondition="" id="5.6"> 

 <actionEnd element-type="state" element-id="5.1" 

      navigation="false" id="5.6.1"/> 

 <actionEnd element-type="state" element-id="5.2" 

      navigation="true" id="5.6.2"/> 

</action> 

 Object Diagram has children nodes such as object and 
object associations. The object tags are related to classes 
as they are mainly instance of classes. Object association 
has also reference to those associations defined in class 
diagram as it is an instance of them.  
 itSIMPLE uses mainly strips and typing requirements in 
PDDL, it can also support fluents. Types are easily 
extracted from classes following their generalizations. 
Functions are extracted from those class attributes that are 
declared as Numeric. For instance, a class Table can have 
an attribute called load defined as Numeric and it would 
appear in PDDL document in :functions section as (load 
tab? - Table). 

 Every boolean attribute and all associations from Class 
Diagram are represented as predicates in PDDL. 
 The name of the association becomes the name of the 
predicate. Association end with navigation equal to false 
becomes the first parameter of the predicate. The true 
value for navigation indicates the second parameter. 
 Operators declared for each class becomes actions in 
PDDL. From the Class Diagram it is possible to find the 
action names and their parameters. The State Chart 
Diagram gives us the whole features of pre and post-
condition of an action. From the states, in each State Chart 
Diagram, we can extract part of the precondition and the 
delete list of the action, as well as some post-condition 
and add list predicates. It is made by a simple way: the 
origin state of an action provides precondition and delete 
lists predicates; the goal state of an action provides the 
post-condition and the insert list. In addition, the 
precondition and post-condition are complemented by the 
tag attributes of the action specification.    
 In one hand, both Class Diagram and State Chart 
Diagram provide necessary information to create a 
complete STRIPS-like domain specification in PDDL 
language.  
 On the other hand, the problem in PDDL language can 
be extracted from Object Diagrams.  Two Object 
Diagrams are necessary to specify initial and goal states. 
They are the Snapshot-init and Snapshot-goal.  Since they 
are specific tags in the XML representation, itSIMPLE 
can extract all the objects and declare them in :objects 
PDDL section.  
 In addition, all the instanced attributes and associations 
from the Snapshot-init are declared in :init section and all 
from Snapshot-goal are declared in :goal section. With 
these two diagrams itSIMPLE can model the problem as 
an instance of a domain. 
 Dynamic and static behaviors of Blocks World domain 
can be analyzed and validated using Petri Nets. Some 
works, such as Tate’s Common Editor Process (Tate et al, 
1998) and Wilkins’s ACT editor (Myers and Wilkins, 
1997) can provides important insights as this part of the 
project is still under development. In the problem example 
presented in Figure 8, a Petri Net should be built in order 
to begin the process of analyses. Here, it is depict only a 
final representation of the net schema since the Petri Net 
editor is not implemented yet in itSIMPLE. Figure 9 
shows the problem and Figure 10 shows its Petri Net 
schema where it can be figured some aspects of the 
problem domain such as the relationship between the 
states. The closed world representation of blocks problem 
is such that it is possible to go from a special state (an 
essential node in the graph or Petri Net) to one of the three 
connected component moving either the block A, B or C. 
Thus, to plan to go from one state in one of the connected 
component to other connected component, it is necessary 
to have the essential node (all blocks on the table) as an 
intermediary goal. This can also avoid the Sussman 
anomaly (Sussman, 1990). 
   



 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 – Classical Blocks World problem – three blocks on a table 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 – Petri Net schema for the classical Blocks World problem 
 
 
 

Conclusion and Future Works 

 
The software itSIMPLE proposed to ICKEP (International 
Competition on Knowledge Engineering for Planning) is 

in its preliminary version, and just provides a simple 
environment based in UML models to express planning 
domains. However pure UML does not fit all structures in 
PDDL language, for instance. The fluent definition in 
PDDL language can be translated only if guided by new 
XML rules inserted in the translator component. The same 
occurs with Petri Nets and there a specific library called 

4 5 

2 3

1 7 

6 

10 

11 

9

8 
12 

13 

Move C 

Move A 

Move B 

A 

A A C 

C 

A B C 

B 

A 

C B C 

A 

B 

A 

C 

A 

B 

1 

2 3 4 5 

C 

B 

A 

B 

C 

B 

C 

B 

6 7 8 9 A 

C 

B A 

C 

B A B 

C 

B 10 11 12 13 

C 

A 



PNML that adds in XML specific Petri Nets expression. 
In the future we will add to the translator a specific PDML 
(Planning Domain Modeling Language) to cover all this 
aspects. In the current version of itSIMPLE some rules as 
the ones for fluents were already included ad hoc. 
 The support for Petri Nets models, extracted from XML 
files, are under development and it is supported by some 
works in the literature (Silva and Santos 2004). 
 The next natural step is a validation algorithm that 
provides static and dynamic analysis of any planning 
domain. And a more distant target which is the 
classification of domain features, extracted from the 
domain analyses, in order to decide which kind of 
planning technique or heuristic suits better the proposed 
domain. 

Acknowledgements 

The itSIMPLE project has been developed in the DLab 
(Design Lab) and IAAA Lab. The author would like to 
acknowledge the help of all coworker from both Labs for 
the helpful suggestions which have made this paper better. 

References 

Bray, T.; Paoli, J.; McQueen, C.M.; Maler, E.; Yergeau, 
F. 2004. Extensible Markup Language (XML) 1.0 – Third 
Edition. Available in: http://www.w3.org/TR/REC-xml/.  

D’Souza, F.D. and Wills, A.C. 1999. Object, 
Components, and Frameworks with UML – The Catalysis 
Approach. Addison-Wesley. United States of America 
and Canada. 

Fox, M. and Long, D. 2003. PDDL 2.1: An Extension to 
PDDL for Expressing Temporal Planning Domains. 
Journal of Artificial Intelligence Research 20:61-124. 

Murata, T. 1989. Petri Nets: Properties, Analysis and 
Applications. In Proceedings of IEEE, 77(4):541-580. 

Scheetz, M., Mayrhauser, A., Dahlman, E. and Howe, 
A.E. 1999. Generating Goal-oriented Test Cases, In 
Proceedings COMPSAC '99, 110-115. 

Simpson, R.M; T. L. McCluskey, W. Zhao, R. S. Aylett 
and C. Doniat 2001. An Integrated Graphical Tool to 
support Knowledge Engineering in AI Planning. 
Proceedings, 2001 European Conference on Planning, 
Toledo, Spain. 

Silva, J R. and Santos, E. A. 2004. Applying Petri nets to 
requirements validation. In: IFAC Symposium on 
Information Control Problems in Manufacturing. 
Salvador, 2004. INCOM'04 : Salvador : IFAC, p. 1. 

Sussman, G.J., 1990, The Virtuous Nature of Bugs, on 
Readings on Planning,  J. Allen, J. Handler, A. Tate 
(eds.), Morgan Kauffman. 

Vaquero, T. S., Tonidandel, F., Silva, J.R. 2005. 
itSIMPLE: Integrated Tools Software Interface for 
Modeling Planning Environments. Can be downloaded 
from http://www.pmr.poli.usp.br/d-lab/site or 
http://dlab.poli.usp.br. 

 

 


